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MULTILEVEL MULTIPOLE-FREE FAST ALGORITHM
FOR ELECTROMAGNETIC SCATTERING PROBLEMS IN LAYERED MEDIA

Michael Andrew Saville, Ph.D.
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign, 2006
Weng Cho Chew, Advisor

A multilevel multipole-free algorithm is presented for solving electromagnetic scattering prob-

lems in the vicinity of a half space or layered medium. By replacing the multipole expansion

in the fast inhomogeneous plane wave algorithm (FIPWA) with a multipole-free expansion,

this new algorithm is simpler to derive and retains O(N log N) scaling in memory and pro-

cessing time. To develop this new algorithm, known as the multipole-free fast inhomogeneous

plane wave algorithm (MF-FIPWA), error control is established for arbitrary accuracy.

In addition, comparison of the memory usage and simulation time is presented for FIPWA

and MF-FIPWA for moderate to large scale problems. Various alternate approaches to

implementing MF-FIPWA are discussed in terms of how the fast algorithms set up translation

matrices and where gains can be made. Finally, details of the advantages of using non-

uniform sampling are provided. Results show 30% savings in memory usage and up to 20%

savings in computing the matrix-vector product.
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A multilevel multipole-free algorithm is presented for solving electromagnetic scattering

problems in the vicinity of a half space or layered medium. By replacing the multipole

expansion in the fast inhomogeneous plane wave algorithm (FIPWA) with a multipole-free

expansion, this new algorithm is simpler to derive and retains O(N log N) scaling in memory

and processing time. To develop this new algorithm, known as the multipole-free fast in-

homogeneous plane wave algorithm (MF-FIPWA), error control is established for arbitrary

accuracy.

In addition, comparison of the memory usage and simulation time is presented for FIPWA

and MF-FIPWA for moderate to large scale problems. Various alternate approaches to

implementing MF-FIPWA are discussed in terms of how the fast algorithms set up translation

matrices and where gains can be made. Finally, details of the advantages of using non-

uniform sampling are provided. Results show 30% savings in memory usage and up to 20%

savings in computing the matrix-vector product.



CHAPTER 1

INTRODUCTION

1.1 Background

Electromagnetics applications play a vital role in the world today. The importance of this

field ranges from the common convenience of wireless phones and networks, to the critical

need of global communication and defense systems. Key to the design of these technologies

is simulation of electromagnetic wave propagation, radiation, and scattering.

Maxwell’s equations, the governing equations for electromagnetic phenomena, are ele-

gantly concise, but are, by no means, simple to solve. While the concise form1 traditionally

includes only four vector differential equations, most real-world problems are not solvable

without the aid of computer science. To solve real problems, the differential equations are

cast into a large number of linear equations and computed simultaneously. It might appear

that the problem is easily solved; however, advanced mathematics and computational skills

are often needed to complete the simulation.

While there are mature mathematical and numerical techniques for solving differential

equations, the underlying physics introduce additional challenges. In many instances, the fre-

quency of interest makes the size of the problem impractical to solve, even with a computer.

For example, to evaluate the radiation pattern of an installed aircraft antenna at X-band,

the number of matrix equations easily exceeds 10 million. Whether differential or integral

1Credited to Oliver Heaviside [1].
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equation solvers are used, the computation requires an enormous amount of computer mem-

ory and number of floating point operations. Additionally, many advancing technologies

and problems have even more sophisticated needs. Of particular interest to national defense

are the buried object and foliage penetration problems, whereby one desires to use electro-

magnetic sensing to observe, monitor, and track a target that is embedded in the earth or

masked by forest. These problems are difficult to solve because they involve complicated

environments and immense sizes of over 100 million unknowns.

In recent years, the effort of solving large problems has been eased by the invention of

fast algorithms [2–8]. These are varied, but are recognizable by the efficiency O(N log N)

with which they solve the electromagnetics problem. Fast algorithms have been successfully

applied to both differential and integral equation solvers, but the integral equation method

is well-suited for many scattering and remote sensing applications. The number of unknowns

can be greatly reduced as compared to the differential solvers, and no artificial boundary

is needed to truncate the problem domain. However, the integral equation has its own

difficultly, and that is the need for a Green’s function. Once the Green’s function is known,

or can be computed, the problem can be efficiently solved with the fast algorithm.

1.2 Fast Algorithms

The notion of a fast algorithm is implied by the computational complexity, or efficiency, of

the algorithm, where fast is anything better than O(N 2). In terms of the integral equation

solver, the method of moments (MOM) [9] is routinely employed to solve electromagnetic

(EM) scattering and radiation problems. In this method, the scatterer, or radiator, is first

discretized into a finite set of radiating elements. The Green’s function describes how each

element radiates EM fields due to an unknown excitation current. In solving for the unknown

current elements, each current element must interact with every other. For a very large

problem, this entails a matrix of enormous size and a capable matrix solver. Using iterative
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matrix solvers, such as the conjugate gradient method, up to two matrix-vector products

must be computed during each iteration at a cost of O(N 2). This is still prohibitive to large-

scale problems, and this is where the fast algorithms contribute. In particular, the multilevel

fast multipole algorithm (MLFMA) [8] and the fast inhomogeneous plane wave algorithm

(FIPWA) [10] both solve the integral equation formulation by accelerating the matrix-vector

products in the matrix solver. In this work, the phrase multilevel fast algorithm is used to

describe the broader class of fast algorithms that use a multilevel approach [11] to achieve

O(N log N) complexity. The multilevel approach will be discussed more in Chapter 2.

Today, different categories exist for fast algorithms that are based on integral equations,

but each is formulated by expanding the Green’s function with multipoles, plane-waves, or

both [8, 10, 12], and then forming a diagonal Green’s-function operator. Essentially, the

expansion is achieved by replacing the spatial, free-space Green’s function with a spectral

representation. Instead of computing the numerous interactions individually, aggregates are

computed by first treating neighboring elements as a group, which has a radiation pattern.

The radiation pattern is represented in the spectral (plane-wave) domain so that it can be

translated to a receiving group with a limited number of plane waves. This limited number

equates to a diagonal form of the Green’s function. Finally, the receiving group disseminates

the incoming radiated field to its respective elements. In this process, only a single translation

is needed for many interactions, and it is computed efficiently because of the diagonal form.

The particular expansion of the Green’s function is what makes each fast algorithm

unique. Most solutions for free space problems use the fast multipole algorithm. Yet, several

solutions to the low-frequency, free-space scattering problem use purely plane-wave based

approaches. For example, in [13], the Green’s function is formed as a mix of propagating

and evanescent plane waves. These approaches achieve O(N log N) cost in processing and

memory because they use the multilevel paradigm. However, the methods for layered-media

problems still rely on multipole expansions [14–16]. The Green’s function for layered media
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is complicated, because its closed form solution is in integral form, i.e., Sommerfeld inte-

grals. The monopole integrand of the Sommrfeld integral is expanded into multipoles to

yield a diagonal-form Green’s function. In the formulation of FIPWA for the layered media

problem, the Sommerfeld integrals are accelerated with the method of steepest descent [1],

and the Green’s function is set into diagonal form with interpolation and extrapolation.

While FIPWA used multipoles, the multipoles are not needed and can be replaced with the

plane-wave expansion of 2-D FIPWA. The details are reserved for Chapter 2.

1.3 Multipole-Free Fast Algorithm

The focus of this research is to develop a pure plane-wave, or multipole-free, fast algorithm

for layered media applications. By replacing the Green’s function expansion, or translator,

of the original FIPWA with a multipole-free expansion, a simpler translator is achieved. The

significance of the multipole-free expansion is first seen in the simplicity of the derivation and

computation. Second, the use of plane waves makes it easier, and potentially less expensive,

to control the error due to low-frequency breakdown. Finally, this new algorithm is studied

for suitability to large scale problems, such as scattering of a military vehicle over lossy earth.

1.4 Organization

Chapters 2–3 present the ground work of the new algorithm. Chapter 4 demonstrates error

control of the 2-D translator that is used in the new algorithm and Chapter 5 demon-

strates the multipole-free algorithm for canonical and complex targets. Chapter 6 presents a

comparison of the multipole and multipole-free forms of FIPWA. Chapter 7 discusses the im-

plementation and optimization. Chapter 8 provides notes on debugging and testing the new

algorithm. Chapter 9 initiates a study of non-uniform sampling of the translator coordinates,

and Chapter 10 presents brief conclusions.
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CHAPTER 2

FAST INTEGRAL EQUATION
SOLVER

2.1 Electric Field Integral Equation

Given the differential, time-harmonic form of Maxwell’s equations, it is straightforward to

derive the vector wave equation,

∇×∇× E(r) − ω2µεE(r) = iωµJ(r), (2.1)

where J represents the electric sources and E represents the unknown electric field. Note

that the time convention e−iωt is used and suppressed. The free space scattering by a perfect

electric conductor (PEC), shown in Fig. 2.1, can be solved by computing the electric field in

(2.1) with the electric-field, surface integral equation [17],

4πi

kη
n̂ × Einc(r) = n̂ ×

∫

S

dSG(r, r′) · J(r′), r ∈ S0, (2.2)

where G =
(
I − 1

k2∇∇′) g0(r, r
′) is the free-space dyadic Green’s function, and g0(r, r

′) =

eik·(r−r
′)

|r−r′| . The currents on the target are unknown, but can be solved with the Moment

Method [9], also called the Method of Moments (MOM).

For the surface integral equation in MOM, J(r) is routinely expanded with the Rao,

Wilton, Glisson (RWG) basis functions [18]. Next, the boundary condition, n̂ × Einc =

n̂ × Escat, r on the surface S0, is enforced with a set of testing functions to form the matrix
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Figure 2.1: Scattering of impenetrable object by incident electric and magnetic fields.

equation

V = Z · I. (2.3)

In (2.3), V = 〈Λ(r), n̂ × Einc(r)〉,
〈
Λ(r),G(r, r′),Λ(r′)

〉
, and Λ is the RWG basis/testing

function. The integrals are represented with the inner product notation 〈·, ·〉.

Clearly, the current vector I is solved by inverting Z. However, this is extremely expen-

sive, with a cost of O(N 3). Hence, iterative solvers are used, but they are also too expensive

for large problems. In general, the fast algorithms accelerate the matrix-vector product in

the iterative solver. The particular fashion of constructing the matrix-vector product also

alleviates the need to form Z explicitly. The multilevel fast algorithms achieve a solution for

I with O(N log N) cost in processing time and O(N log N) cost in memory.

2.2 Layered Media Dyadic Green’s Function

The Green’s function for the layered-media problem is more costly to compute than the free-

space Green’s function because Sommerfeld integrals are involved. To find the layered-media

dyadic Green’s function, the spatial Green’s function is evaluated in the spectral domain.
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Using the Ez, Hz formulation in [1], the spectral Green’s function for planarly layered media

can be derived as

g(r, r′) =
i

2

∫

SIP

dkρ
kρ

k1z

H
(1)
0 (kρρ)

[
eik1z |z| + R̃(k1z, . . . , kNz)e

ik1z(z+2d1)
]
, (2.4)

where R̃(k1z, . . . , kNz) is the generalized reflection coefficient for the N -layer medium, kiz =
√

k2
i − k2

ρ, d1 is the height of the interface, and SIP is the Sommerfeld integration path.

While the above is not the Image Theorem, the contribution of the reflection is treated

as though the source comes from an image, and is weighted by the appropriate reflection

coefficient. Figure 2.2 shows the source and image paths, and clarifies the purpose of the

generalized reflection coefficient. R̃ is evaluated by recursively computing the Fresnel reflec-

tion coefficients, and thus constitutes the reflections from N planar, complex homogeneous

layers.

Letting d1 = 0, z > 0, and generalizing the coefficients in the integrand, (2.4) is expressed

more succinctly as

g (r, r′) = gd (r, r′) + gr (r, r′) ,

gd (r, r′) =

∫

SIP

dkρW
d (k1z) H

(1)
0 (kρρ)eik1zz,

gr (r, r′) =





∫
SIP

dkρW
TM (k1z, . . . kNz) H

(1)
0 (kρρ)eik1zz,

∫
SIP

dkρW
TE (k1z, . . . kNz) H

(1)
0 (kρρ)eik1zz,

(2.5)

where W d (k1z) = ikρ

2k1z
, W TM (k1z, . . . kNz) = ikρ

2k1z
R̃TM , and W TE (k1z, . . . kNz) = − ikρ

2k1z
R̃TE.

The dyadic Green’s function G is symmetric [19], and each element in G reduces to a

combination of the components in (2.5). Hence, the individual components are not shown

here. The next step is to apply the fast algorithm to accelerate computation of the matrix

elements of (2.3), as well as the matrix-vector products.
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Figure 2.2: Total field due to direct and reflected fields.

2.3 FIPWA for Layered Media

2.3.1 Why FIPWA?

The fast inhomogeneous plane wave algorithm, FIPWA, is chosen as the fast algorithm for

this research because it is based on a plane-wave approach [20], is adaptable to a multipole-

free form, and is known to solve various layered-media scattering problems, such as scattering

by an object over a lossy half-space, and scattering by a buried object [10, 14, 21]. The

original formulation expanded part of the factorized Green’s function with multipoles and is

presented here to lay the groundwork for the modification in Chapter 3. Emphasis is given

to the multilevel approach, as it is important to understanding efficiency in error control, as

discussed in Chapter 5.

2.3.2 Factorizing the Green’s function

Factorization begins by first discretizing the scatterer into N elements, and then grouping

basis elements, or particles, according to proximity, as shown in Fig. 2.3. The top left displays
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Figure 2.3: Bounding box and subdivision. Top left: A meshed sphere. Top right: The
bounding cube around the meshed sphere. Bottom left: First partition into eight subcubes
(level 1). Bottom right: An expanded view of the level 1 cubes with their respective particles.

a simple sphere; the top right shows the bounding box. Starting from the bounding box,

each box is recursively divided into eight smaller boxes until the desired number of levels is

reached. For clarity, the bottom left and right show the first level subdivision, and how the

particles are grouped according to their parent cube. In the multilevel approach, many levels

are used, with hierarchy representing an upside-down tree. Hence, each box is associated

with a different level in the tree. This will be discussed more in a later section, but for now, it

begins to show how particles will be grouped together to form aggregate radiation patterns.

As the Green’s function is factorized, the radiation patterns will be distinguishable from

the translator. Recalling that the matrix elements in (2.3) represent interactions between

particles, the separation vector rji denotes a particular interaction pair. For the reflected

interaction, rji = x̂(xj −xi) + ŷ(yj − yi) + ẑ(zj + zi). The vector is factored according to the

parent cubes so that rji = rjJ + rJI + rIi. Typically, the Green’s function is factored into

three parts: radiation pattern, translator, receiving pattern. It is succinctly written as

g(rji) =
∑

Ωs

βjJ(Ωs) · TJI(Ωs) · βIi(Ωs), (2.6)
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where βIi represents the radiation pattern from cube I that contains particle i, TJI represents

the translation of the radiation pattern of cube I to far-field cube J , and βjJ represents the

receiving pattern and dissemination to a particle j in cube J .

The factored form in FIPWA is derived from (2.5) by changing variables from (kρ, kz)

to (θ, α), and introducing the 2-D translator from the fast multipole algorithm (FMA) [17].

FMA is well documented in the references, so it is not derived here. Instead, the factored form

of FIPWA is presented, where the FMA translator is used in the 3-D translator. Also, the

term for the direct wave interaction can be expressed without using multipoles. Therefore,

the following derivation is for the reflected wave part of the Green’s function:

gq (rj, ri) =

∫

SIP

dθW q (θ) H
(1)
0

(
k sin θ|ρj − ρi|

)
eik cos θ(zj+zi), (2.7)

=

∫

SIP

dθW q (θ) eikzjJ cos θ
[
H

(1)
0

(
k sin θ|ρj − ρi

)
eikzJI cos θ

]
eikzIi cos θ, (2.8)

=

∫

SIP

dθW q (θ) eikzjJ cos θeikzIi cos θ

× 1

2π

∫ 2π

0

dα
P∑

p=−P

H(1)
p (k sin θρJI) e−ip(α−φJI−π/2)eikzJI cos θ

×eikρjJ sin θ cos(α−φjJ)eikρIi sin θ cos(α−φIi) (2.9)

=

∫

SIP

dθ

∫ 2π

0

dαeik(θ,α)·rjJ

×
(

1

2π
W q (θ) eikzJI cos θTJI(θ, α)

)
eik(θ,α)·rIi , (2.10)

where q represents the TE, or TM component, and the multipole expansion is given by

TJI(θ, α) =
P∑

p=−P

H(1)
p (k sin θρJI) e−ip(α−φJI−π/2).

For the direct interaction between two particles, (2.10) is exact when P → ∞, but the

error has been shown to be exponentially controllable when P is finite. However, to make the

factorization efficient, the radiation and receiving patterns, represented by the exponential

terms containing Ii and jJ , are sampled. These represent radiation and receiving patterns

which are smooth in the far field, and efficiency comes from using the same samples for all
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cubes of the same size. The sampled patterns are

eik(θ,α)·rjJ eik(θ,α)·rIi =
∑

Ωs

eik(θs,αs)·rjJ eik(θs,αs)·rIiI(θs, αs, Ωs), (2.11)

where I(θs, αs, Ωs) = Iθ(θ − θs)Iα(α − αs) represents the interpolation function from the

sample set Ωs = (θs, αs).

Upon substituting the interpolation into (2.10), and swapping the order of summation

and integration, the Green’s function becomes factored as

gq (rj, ri) =
∑

Ωs

eik(θs,αs)·rjJ eik(θs,αs)·rIi

×
(∫

SIP

dθ
1

2π
W q (θ) eikzJI cos θ

∫ 2π

0

dαTJI(θ, α)I(θs, αs, Ωs)

)

=
∑

Ωs

βjJ(Ωs) · TJI(Ωs) · βIi(Ωs), (2.12)

where βjJ(Ωs) = eik(θs,αs)·rjJ , βIi(Ωs) = eik(θs,αs)·rIi and the form of the 3-D FIPWA translator

for layered media is

TJI(Ωs) =

∫

SIP

dθ

∫ 2π

0

dα
1

2π
W q (θ) eikzJI cos θTJI(θ, α)I(θs, αs, Ωs). (2.13)

2.3.3 Steepest descent path

The 3D translator described by (2.13) is slow to compute, is very unstable, and is a dense

operator. The slowness comes from the Sommerfeld integration path (SIP). The integrand

is oscillatory on the SIP in the θ-plane, so the path of integration is very long. Instead of

integrating on the SIP, the Cauchy Theorem and Jordan’s Lemma are invoked to deform

the SIP to the steepest descent path (SDP). Starting from the saddle point of the integrand

in (2.13) (θ = 0), the integrand has constant phase, i.e., it is not oscillatory, and it has

exponential decay. It converges very fast.

Figure 2.4 shows the SDP for a single interaction. Also shown are the steepest ascent path

(SAP) and constant magnitude path (CMP), which will help clarify the source of instability.
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Figure 2.4: Steepest descent path (SDP). Also shown are the corresponding steepest ascent
(SAP) and constant magnitude (CMP) paths.

A rigorous treatment of the steepest descent path is deferred to Chapter 3, where it

is derived for complex media. Here, the SDP is presented aside from its explicit formula.

In [21,22], this SDP is called the original SDP, but in this effort, it is called the fundamental

SDP to distinguish it more clearly from the modified SDP that is presented next. Also, the

saddle point for the fundamental SDP is referred to as the fundamental saddle point.

2.3.4 Modified SDP

The translator is used to translate all particles in cube I to cube J . As such, it must account

for all possible interactions between particles in cubes I and J . When the fundamental path

is used for all interactions (i.e., translation between the cube centers), it is possible that

one SDP crosses the SAP of another. Figure 2.5 shows how this occurs and illustrates how

to construct the modified SDP (M-SDP). The saddle point for any SDP occurs where the

path crosses the real axis. This makes it easy to construct a single M-SDP that will prevent

crossing a steepest ascent path.
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Figure 2.5: Instability caused by SDPs that cross SAPs. Top: two different interactions
with particle j. Bottom: SDP and SAP for each interaction. The SDPs cross each other’s
SAP, causing instability in the numerical integration along the SDP.

Referring to the M-SDP, shown in Fig. 2.6, each section of the M-SDP is labeled as

Path I, Path II, and Path III. This is not the exact SDP, so some error occurs. However,

the error is controllable with proper numerical integration. Gauss-Laguerre rules are used

on Paths I and III, while Gauss-Legendre rules are used on Path II. The length of Paths I

and III are discussed in Chapter 4.

With the M-SDP, the 3-D FIPWA translator for layered media is

TJI,3DFIPWA(Ωs) =

∫

Γθ

dθ

∫ 2π

0

dα
1

2π
W q (θ) eikzJI cos θTJI(θ, α)I(θs, αs, Ωs), (2.14)

where Γθ and Γα are the respective, modified steepest descent paths.

The last point in Section 2.3.3, about the translator being dense, is also overcome by

the M-SDP, because only a single integration path is used for all the particle interactions

between cubes I and J . By using a single path of integration, only one set of samples are

also needed. The samples θs ∈ [−π, π] and αs ∈ [−π, π] represent Ns samples on the unit

sphere. In this context, the radiation and receiving patterns form vectors of length Ns, and

the translator in (2.14) is a diagonal matrix. This is the desired form for a fast algorithm.
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Figure 2.6: Modified steepest descent path (M-SDP). Saddle points are located where the
SDP intersects the real axis. Hence, Paths I and III of the SDP are translated far enough
from the fundamental saddle point so that they do not cross any SAPs. Path II is along the
real axis between Paths I and III.

Finally, the interpolation functions were introduced before the SIP was deformed to the

M-SDP. For θ on Path I or Path III, I(θ − θs) functions as an extrapolation function. This

is allowed because the radiation patterns are analytic in the complex plane, and analytically

continuous. In this work, the term extrapolation will be used for both interpolation and

extrapolation of the M-SDP to distinguish from the interpolation of the multilevel approach.

Also, the fundamental SDP is not used, so the modified SDP will simply be referred to as

the SDP.

2.3.5 Multilevel implementation

The 2-D multilevel implementation is represented in Fig. 2.7, where four levels are shown,

and different levels are assigned to different box sizes. The level 0 box is the bounding box

that encompasses the problem domain. The level 1 box is the first box division, and level 2

is the first level where boxes are separated far enough to use FIPWA. Hence, the multilevel

approach translates child-level radiation patterns to parent-level patterns until the highest
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Figure 2.7: Multilevel subdivision of cubes. Shown is the 2-D representation. There are
no translations from levels 2 to 1 or 1 to 0.

level in the tree is reached. This enables an efficient matrix-vector product, however, the

children cannot be summed näıvely. The 3-D subdivision of the cube into eight smaller

cubes was illustrated in Fig. 2.3, page 9. The number of samples used for each cube size

is different because the bandwidth of the corresponding radiation pattern varies with the

cube size. Thus, the patterns of smaller cubes are interpolated to larger cubes, and when

traversing downward, the larger cubes are anterpolated (transpose interpolation) to smaller

cubes. The mathematical description in vector notation is [17]

gq (rj, ri) = βt
jJlmax

· It

1 · βJlmaxJlmax+1
· It

2 · · ·

βJL+1JL
· TJLIL

· βILIL+1
· · · I2 · βIlmax+1Ilmax

· I1 · βIlmax i, (2.15)

where βuv are the child to parent translations, β
t

uv are the parent to child translations, L

is the highest translation level, typically set to 2, lmax is the level of the smallest cubes,

and In, n = 1, 2 . . . are the interpolation matrices. Note that the transposes serve as the

anterpolation matrices.

The approximation, inherent in interpolation, introduces exponentially controllable error.

This error is different from the error caused by interpolation and extrapolation to the SDP.
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2.4 Summary

In this chapter, the scattering from a PEC object is presented in the form of the electric

field integral equation and MOM. Next, the dyadic Green’s function is shown explicitly

for the layered media case. Finally, the overview of FIPWA establishes a baseline for the

multipole-free modification that is applied in Chapter 3.
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CHAPTER 3

MODIFIED FORM OF FIPWA FOR
LAYERED MEDIA

3.1 Introduction

Hu et al. developed the fast inhomogeneous plane wave algorithm (FIPWA) [10,14,22,23] as

an alternative to the fast multipole algorithm (FMA) and multilevel fast multipole algorithm

(MLFMA) (thoroughly discussed and cited in [17]). FIPWA evolves from the fast steepest

descent path algorithm (FASDPA) developed by Michielssen and Chew [24], which was the

first fast algorithm (O(N 4/3 ln N)) to use the spectral integral representation of the Green’s

function, i.e., propagating and evanescent plane waves. FIPWA modified the steepest descent

path (SDP) integrals in FASDPA with extrapolation of evanescent waves from propagating

waves to achieve a diagonal translator. In doing so, FIPWA achieved O(N log N) efficiency

for various two- and three-dimensional scattering problems.

Recently, FIPWA has been adapted in various works to solve the well-known, low-

frequency breakdown in free-space problems [13, 25–27]. Greengard et al. [25] adopted the

plane-wave methods to overcome the low frequency breakdown. They used the spectral

representation of the Green’s function, and then computed the propagating and evanescent

waves with different sets of inhomogeneous plane waves. FIPWA has also permeated other

techniques that include both inhomogeneous plane waves and modified multipoles [13,26,27].
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Sarvas and Wallén [27] provide an excellent summary of the various techniques along with

their composition of the different methods.

To modify 3-D FIPWA for layered media into a purely plane-wave-based algorithm, the 2-

D FMA translator is replaced with the 2-D FIPWA translator [22,23]. However, the original

work on 2-D FIPWA was for free-space problems. In the substitution, the 2-D FIPWA

entails complex media, which means additional SDPs must be carefully defined. With the

modification, potential computational savings become immediately clear.

3.2 Formulation of the Plane-Wave Algorithm

The spectral Green’s function for layered media consists of two principal parts: the direct

interaction and the reflected interaction. The former has already been solved with free space

FIPWA, and the latter can be derived as [1]

gr(r, r′) =

∫

Γ

dθW (k sin θ) eikz cos θH
(1)
0 (kρ sin θ), W (kρ) =

i

2
RTM,TE(k1z, k2z), (3.1)

where kiz =
√

k2
i − k2

iρ. While the notion of a purely plane-wave driven, fast algorithm was

first proposed in the fast steepest descent path algorithm [24], FIPWA was originally factored

under the MLFMA paradigm, with the 2-D FMA translator in place of the 2-D Green’s

function. Using the basic formulation of 2-D FIPWA and letting kρ = k sin θ[x̂ cos(α) +

ŷ sin(α)], and ρji = ρjJ + ρJI + ρIi, the 2-D translator is derived as

H
(1)
0 (kρρji) =

1

π

∫

Γα

dαeikρ(α)·ρ
jJ · eikρ(α)·ρ

JI · eikρ(α)·ρ
Ii

=
Ns∑

s=1

eikρ(αs)·ρjJ · T (αs) · eikρ(αs)·ρIi ,
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where αs are the sample points, and T (αs) is either the FIPWA or FMA translator. The

potential cost savings can be seen by comparing the 2D FMA and FIPWA translators.

T2dfipwa(αs) =
1

π

∫

Γα

dαeikρ(α)·ρ
JII(α − αs), (3.2)

T2dfma(αs) =
1

2π

∫ 2π

0

dα




Np∑

p=−Np

H(1)
p (kρρJI)e

−ip(αJI−α−π/2)


 I(α − αs), (3.3)

where I(α− αs) is the interpolation or extrapolation function, Np = (kD) + 1.8d
2/3
0 (kD)1/3,

and d0 is the number of digits of precision [17]. It is important to note that the interpolation

function in (3.2) may be a global or local interpolation function. If it is global, then it must

use all of the stored samples, which is computationally expensive. In practice, it is local,

where only a few stored samples are used and the cost is greatly reduced.

From (3.1) it can be seen that as long as θ is on the complex SDP, kρ = k sin θ is complex

and can take on all values in the complex plane. This complicates the SDP integration in

the α-plane. Figure 3.1 shows how the SDPs change as kρ changes quadrants in the spectral

plane. The circle in the center of the figure represents the angular locus of possible values of

k̂ρ, and the subgraphs shown in each quadrant of the kρ-plane show the corresponding SDP

and steepest ascent path (SAP).

Upon substituting (3.2) into (3.1), the plane wave translator for layered media is

TJI,3DMFFIPWA(Ωs) =

∫

Γθ

dθ

∫

Γα

dαW q (θ) eikzJI cos θeikρ(α)·ρ
JII(θs, αs, Ωs), (3.4)

where MF-FIPWA distinguishes the multipole-free, fast inhomogeneous plane-wave algo-

rithm (MF-FIPWA) from the fast inhomogeneous plane-wave algorithm reviewed in Chap-

ter 2.

Knowledge of the location of the SAP is critical to performing accurate numerical inte-

gration. However, before deriving the SDP for complex media, it is important to note that

kρ varies in magnitude according to the value of θ. Essentially, each 2-D translator can have

a different effective frequency. This point will be addressed in Section 5.2 of Chapter 5.
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Figure 3.1: Steepest descent paths for 2-D translator.

3.3 Deriving the Steepest Descent Path

The SDP for a lossless background medium is a special case of the complex case, therefore

the following is applicable to the SDPs in free space problems as well. The fundamental

SDP is derived first, followed by the construction of the modified SDP. To simplify the 2-D

notation, let k = keiδ, where tan δ = kI/kR ∈ [−1, 1]. The last constraint is due to the

continuity relations for the Bessel functions. Finally, the lossless, lossy, and active medium

backgrounds are denoted according to Table 3.1.

Table 3.1: Definition of loss/gain ratio tan δ.

tan δ Type of Medium

< 0 Active

= 0 Lossless

> 0 Lossy
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The integral representation of the 2-D Green’s function is given as [22,23]

H
(1)
0 (kρji) =

1

π

∫

Γ

dαeik(α)·ρ
ji ,

=
1

π

∫

Γ

dαeik(α)·ρ
jJ eik(α)·ρ

JIeik(α)·ρ
Ii , (3.5)

where k(α) = k (x̂ sin α + ŷ cos α), Γ is the steepest descent path in the complex α-plane,

and the subscripts denote the group and particle orientations as shown in Fig. 3.2.

Group I 

Group J 

i 

j 

ρ
JI

 

 ρ
Ii

 

ρ
jJ

 

φ
JI

 

 x 

 y 

Figure 3.2: Particle separation and group association.

The fundamental SDP is derived from the translator segment, eikρJI cos(α−φJI), where φJI

is defined in Fig. 3.2. Following the technique of [1], the fundamental SDP is found by

expanding the exponent into a Taylor series and mapping α to the real s-axis as

ik cos (α − φJI) = −s2, −∞ < s < ∞, (3.6)

where α = αR + iαI , and φJI is the angle ρJI makes with the x-axis. Thus, points on Γ are

defined by

α = sgn(s) cos−1(1 − s2/ik) + φJI . (3.7)

Figure 3.3 displays points chosen in the s-plane and the corresponding points in the α-plane

according to the quadratic mapping in (3.7).
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for (3.6) with tan δ = 0.1. Left: real values of mapping parameter in complex s-plane. Right:
SDP in complex α-plane.

3.3.1 SDPs in lossy medium

Several SDPs for lossy medium are shown in Fig. 3.4. The solid black line denotes the SDP

for lossless media. The SDPs revolve about the saddle point, centered at α = φJI , in the

way a pinwheel revolves about its center pin. The curves rotate clockwise as tan δ → 1.

Under extreme loss (Fig. 3.4), the SDP becomes aligned with the imaginary α-axis. The red

line shows the nearly vertical SDP that also passes through the saddle point. The saddle

point is located at the origin of the α-plane. Under lossless conditions, the asymptotes of

the SDP approach the lines α = ±π/2. However, in lossy media the asymptotes occur before

α = |π/2|. The dashed, vertical black line in Fig. 3.4 shows the asymptotes of the SDP when

tan δ ≈ 0.

3.3.2 SDPs in active medium

The SDP for the active medium case is shown in Fig. 3.5. It behaves similarly to the SDP

for lossy media, but the revolution is counter-clockwise. As tan δ → −1, the SDP becomes

horizontally aligned with the real α-axis. In Chapter 4, this behavior will be shown to benefit

FIPWA. Also, the vertical asymptotes occur past the lines α = ±π/2.
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Figure 3.5: Family of steepest descent paths in active media.
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3.3.3 Steepest ascent and constant magnitude paths

A more complete perspective of the complex α-plane is shown in Figs. 3.6 and 3.7. In

these graphs, the SDP is shown for various loss/gain ratios along with the corresponding

steepest ascent path (SAP) and constant magnitude path (CMP). The SAP and CMP also

rotate in accordance with tan δ, and the modified steepest descent path (M-SDP) can still be

constructed because the SAP, SDP, and CMP all pass through the saddle point. However,

for the lossy medium case, the extrapolation degrades. The reasons why will be discussed

in Chapter 4.

3.3.4 Modified steepest descent path (M-SDP)

As discussed in [21], the SDP is infinite and unique to the orientation of particles j and i.

The M-SDP is used to designate the single contour of integration for all particle interactions

between groups I and J . Referring to Fig. 2.6, page 14, an example M-SDP with the

fundamental SDP is shown for lossless media; the M-SDPs in lossy and active media are

constructed in similar fashion, but with consideration of the physical orientation of sending

and receiving groups.

In Fig. 3.8, page 26, the real angle φ0 is defined as φ0 = sin−1(|k · D̂D|/|k · L̂L|) =

sin−1(kD/kL), where D is the group size, and L is the group separation. Clearly, Path II

changes length according to group size and separation.

To construct the M-SDP, Paths I and III are shifted by φ0. The complete SDP for

arbitrary group size, separation, loss/gain, and truncation point is

Path I: α = − cos−1(1 − s2/ik) − |φ0| + φJI , s < 0,

Path II: αJI − |φ0| < αR < αJI + |φ0|,

Path III: α = cos−1(1 − s2/ik) + |φ0| + φJI , s > 0, (3.8)

where φ0 = sin−1(kD/kL), and s is on the real s-axis.
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3.3.5 Behavior of the integrand along the M-SDP

Examples of the behavior of the integrand along the M-SDP are shown in Figs. 3.9–3.12,

pages 27–28. The top graph in Fig. 3.9 shows the M-SDP in lossless (black line) and lossy

media (colored lines) with group size kD = 5 and separation kL = 10 (one buffer box).

The middle graphs show the normalized real and imaginary parts of the integrand along the

M-SDP, and the bottom graph shows the normalized magnitude of the integrand. Note that

the horizontal axis is the real part of α for alignment with the M-SDP in the top graph.

Figure 3.10 shows a similar comparison for active media. The integrand of (3.5) decays

exponentially fast, so paths I and III do not extend far from the real axis.

This is seen more clearly with similar comparisons for large groups. Figures 3.11 and 3.12

show the lossy and active cases, respectively, for group size kD = 15 and one buffer box

separation. As seen by the M-SDP, the imaginary part of α, αI , is less than 0.5, whereas,

in the case of the small group with a single buffer box, αI ≈ 1 (Fig. 3.9). In the active case

(Fig. 3.12), paths I and III only extend 1-2 points away from the real axis.
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Shown for kD = 5 and small separation kL = 10 (one buffer box) in a lossy medium. Top:
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Figure 3.10: Normalized integrand of (3.5) along M-SDP for small groups in active medium.
Shown for kD = 5 and one buffer box separation (kL = 10) in an active medium. Top: M-
SDP. Middle: Real and imaginary parts. Bottom: Magnitude.
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Figure 3.11: Normalized integrand of (3.5) along M-SDP for large groups in lossy medium.
Shown for kD = 15 and small separation kL = 30 (one buffer box) in a lossy medium. Top:
M-SDP. Middle: Real and imaginary parts. Bottom: Magnitude.
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Figure 3.12: Normalized integrand of (3.5) along M-SDP for large groups in active medium.
Shown for kD = 15 and one buffer box separation (kL = 30) in an active medium. Top:
M-SDP. Middle: Real and imaginary parts. Bottom: Magnitude.
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3.4 Cost Analysis

The plane-wave algorithm is easier to derive than the multipole algorithms, and in this

section the cost is briefly compared to FIPWA. Given the 3-D translator TJI,3D(θs, αs) =

W (θ)eikzJI cos θsTJI,2D(θs, αs), where TJI,2D(θs, αs) can be the 2-D FMA or 2-D FIPWA trans-

lator. Upon comparing the two translators,

TJI,2D,fma(θs, αs) =
1

2π

∫ 2π

0

dα
P∑

p=−P

H(1)
p (k sin θsρJI)e

−ip(α−φJI−π/2)I(α − αs), (3.9)

TJI,2D,fipwa(θs, αs) =
1

π

∫

Γφ

dαeikρJI sin θs cos(α−φJI)I(α − αs), (3.10)

it is clear to see that it is simpler and less expensive to construct TJI,3D with TJI,fipwa. Upon

discretizing the integrals,

TJI,2D,fma(θs, αs) =

NQ∑

q

P∑

p=−P

wqH
(1)
p (k sin θsρJI)e

−ip(αq−φJI−π/2)I(αq − αs), (3.11)

and

TJI,2D,fipwa(θs, αs) =

NQ∑

q

wqe
ikρJI sin θs cos(αq−φJI)I(αq − αs), (3.12)

where NQ is the number of quadrature points, and wq is the quadrature weight.

For the multipole translator, P is derived from the refined excess bandwidth formula [17],

so the integration is proportional to P . The bandwidth of the radiation pattern is 2P ,

and following the Nyquist sampling theorem, Nα = 4P . Also, the number of samples for

interlevel interpolation is Ns = 2P , making the total complexity of constructing the 2-D

multipole translator Nfma = NsNQ(2P + 1) ≈ (2P )3.

The multipole-free translator has NQ = NI +NII +NIII , where the subscripts, I, II, III,

denote the integration path in Fig. 2.6. Letting the interpolation function, I(·), equal the

Dirichlet function as defined in [21], I(·) has a finite bandwidth of 2P [21]. The number of

samples for interlevel interpolation is Ns = 2P , as it is the same as for the FMA translator.

The total complexity for the 2-D FIPWA translator is Nfipwa = NsNQ.
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NI , NII , NIII have not been specified, but because NII is on the real axis, it represents

the number of propagating waves, and is equal to P for α ∈ [−π/4, π/4]. As for NI and

NIII , the exact relationship between the bandwidth of eikρJIcos(α−φJI) and the Gauss-Laguerre

quadrature rule has not been established. In [21], NI = NIII = 15 for the 3-D SDP (θ).

However, to compare the 2-D translators fairly, NI , NIII must be set high enough to ensure

double machine precision accuracy. In this work, NI = NIII = 40, but the threshold of equal

cost is Nfipwa = Nfma. This occurs when

Nfipwa ≤ Nfma (3.13)

NsNQ = NsNQNP (3.14)

(2P )(P + 2NI) = (2P )(2P )(2P + 1) (3.15)

NI = 2P 2 + 0.5P (3.16)

The last equation, (3.16) allows one to compare the cost to construct the 2-D FIPWA

translator in terms of the multipole expansion number, P . As long as the number of quadra-

ture points on paths I and III of the 2-D FIPWA translator can be kept low, the cost to

construct the 2-D FIPWA translator is less than the cost to construct the 2-D FMA trans-

lator. A more detailed discussion of the total cost to construct the 3-D FIPWA and 3-D

multipole-free translator is presented in Chapter 6.

3.5 Summary

In this chapter, the translator for FIPWA in layered media was modified to a purely plane-

wave based translator. While simpler to derive, the added SDP complicates the translator

because the 2-D translator must allow complex materials and broadband behavior. The SDP

was derived and various paths were shown to illustrate differences between the lossless, lossy,

and active paths. Finally, these differences revealed how the error control must adapt to the

changing values of kρ. The next chapter discusses how to control the error.
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CHAPTER 4

ERROR CONTROL

4.1 Introduction

To extend the plane-wave method to the layered-media problem, the 2-D FIPWA should be

stable and error-controllable in complex media. The primary error sources are the truncation

of the steepest descent path, the extrapolation error, and the numerical machine error. To

establish a suitable control, this section follows the investigation in [28, 29], where the error

for the 2-D FIPWA was studied for free-space cases. In [28] and [29], the excess bandwidth

formula, as used in MLFMA [17, 30], was shown to be the dominant control mechanism for

extrapolation. Also, the authors derived the interdependence between the number of sample

points used for extrapolation and the truncation of the SDP. In cases where the accuracy

could not be controlled, the authors optimized the controlling parameters: the number of

sampling points and the length of the SDP.

A key element of FIPWA is extrapolation of the radiation patterns from real-valued

sample points to the SDP. While the nature of the SDP in lossless media makes this quite

suitable, the SDP in complex media does not exhibit the same behavior, resulting in less-

controllable error. Therefore, additional effort must be made to control the associated errors

in complex media before 2-D FIWPA can be applied to the 3-D layered-media problem.

In this chapter, complex media are categorized as lossy, lossless, or active. Furthermore,

for each case, control regions are defined according to the loss, gain, and number of buffer

31



boxes, as used in FIPWA and MLFMA. It is shown that 2-D FIPWA is partially error-

controllable for lossy media and highly error-controllable for active media. The results lead

to the conclusion that 2-D FIPWA is stable, and error controllable, in the Sommerfeld

integrals for layered-media problems.

4.2 SDP Truncation Error

The lengths of Paths I and III are set according to the desired accuracy. Fortunately,

truncation error by itself is controllable to machine precision. Given the desired digits of

precision, d0, the M-SDP truncation point, α = αRt + iαIt, can be determined from

e=m{(kD+kL) cos(αRt+iαIt)} = 10−d0 , (4.1)

which is slightly modified from [29] to account for complex k, and where D and L are

the groups’ diameters and separations, respectively. An alternative approach is to use the

quadratic map e−s2ρJI ≤ 10−d0 . As long as the integrand decays exponentially along Paths I

and III, s = smax is easily determined, and the error is highly controllable. Hence, the main

effort is to enable highly accurate extrapolation.

4.3 Extrapolation Error

Hu et al. [22] studied interpolation and extrapolation with various functions: sinc, approxi-

mate prolate spheroidal (APS), and the truncated-APS. The truncated APS is a local inter-

polation method (with respect to the set of samples), and loses 1-2 digits of accuracy as a

trade-off to gaining efficiency. However, Ohnuki and Chew [29] found it useful to study the

error control with the sinc interpolation function because it is global and results in the least

error. Hence, the sinc function is used in this section. Although the sinc function is used for

both interpolation and extrapolation, the extrapolation contributes the largest error. With
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the sinc function, the extrapolation error is partially controllable according to the refined

excess bandwidth formula [17]

P = kD + 1.8d
2
3
0 (kD)

1
3 , (4.2)

where P is the number of samples in [−π, π], and d0 is the number of digits of accuracy.

Ohnuki and Chew [29] defined intervals of P where the error is controlled with (4.2) for

lossless media. Figures 4.1 and 4.2 show examples of the regions defined in [29], but for lossy

and active media, respectively. Region I is uncontrollable and occurs when too few samples

are used for extrapolation. Region II is controllable up to machine precision, and Region III

is bounded by the computational noise floor. Region IV is considered optimizable because

the error is still small, but it is not controlled. In comparing the two figures (both for small

groups with large separation), extrapolation in lossy media becomes unstable (Region IV)

for a smaller number of samples, P , than in the active media case. However, both can be

controlled (Region II) to a degree of accuracy within machine precision. In addition, cases

for large groups, or small buffers in complex media were also studied; the results appear

in [31].

The highly lossy cases (tan δ > 0.2) in Fig. 4.1 have a large Region IV. This occurs for

two reasons. First, the exact solution is very small, and round-off error corrupts the relative

error measurement. By examining the absolute error, it can be seen that the absolute error

decreases as predicted by (4.2). Although the relative error is large, the particle interaction

becomes negligible and has little impact on the solution. Second, in cases where the groups

have small separation, extrapolation in highly lossy cases actually loses accuracy. The reason

is best explained by considering the complex α–plane and the SDPs for the lossy and active

cases.
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Figure 4.1: Interpolation error of small group in lossy medium with large separation. The
group size is kD =

√
2ka = 5 and the separation is kL = 39, or 10 buffer boxes.
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Figure 4.2: Interpolation error of small group in active medium with large separation. The
group size is kD =

√
2ka = 5 and the separation is kL = 39, or 10 buffer boxes.
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As seen in Figs. 4.1 and 4.2, the behavior of the extrapolation error for the lossy medium

case differs from the active medium case. The difference is due to the topography of the

α-plane for complex media. Referring to Figs. 3.6 and 3.7, page 25, in lossless media,

Path II lies on the real axis and coincides with the constant magnitude path (CMP). Hence,

interpolation of Path II is highly accurate. Additionally, only the phase of the radiation

pattern changes when sampled from the CMP (real axis), so extrapolation to Paths I and III

of the SDP is also performed with high accuracy.

However, the CMP for complex media is not on the real axis. Thus, the radiation

patterns can change rapidly in both phase and magnitude when sampled from the real

axis, and extrapolation to a given point on the SDP is not as controllable. Figures 4.3

and 4.4 illustrate the extrapolation process. The hatched solid lines represent the M-SDP

for lossy and active cases, respectively. The dot-dashed line represents the constant CMP.

The dotted lines represent the real-valued samples used for interpolation. The dashed lines

illustrate the extrapolation from the real axis to the M-SDP. Note that all the values in the

sample set are used to extrapolate to a given point on the M-SDP. In the lossy case, Fig. 4.3,

extrapolation is across the CMP for Path I. It is conceivable that the resulting samples are

orders of magnitude different from the magnitudes of the M-SDP values. Hence, the machine

precision and roundoff error can limit the extrapolation process.

In the active case, Fig. 4.4, extrapolation does not cross the CMP for Path I, and the

M-SDP is closer to the real axis. Thus, the extrapolation error is more controllable. Finally,

the figures illustrate extrapolation from samples that are nearby the M-SDP point. These

are the prominent samples. Although the samples from the positive real values are also used,

the contribution is small. Hence, when considering the extrapolation to Path III, there are

values from the negative real axis that must cross the CMP, but the contribution is minor

compared to those from the positive real samples.
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Figure 4.3: Extrapolation from real axis to MSDP in lossy media. Extrapolation must
cross the constant magnitude path.
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Figure 4.4: Extrapolation from real axis to MSDP in active media. Extrapolation does not
cross the constant magnitude path.
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4.4 Control Regions

To identify conditions when the error is controllable or optimizable, the behavior of the

error is examined for various sets of the parameters: kD, kL, and tan δ. Figure 4.5 shows

an example of the error versus the group separation distance, or translation distance, for a

low-loss case (tan δ = 0.1). The absolute error is used instead of the relative error, because

of round-off error, as discussed previously. P was set according to the refined excess

bandwidth formula (4.2).
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Figure 4.5: Error control of small groups by group separation in lossy media. Control
occurs when the solid lines extend below the corresponding dashed lines. It is clear that the
error is still low even when the desired accuracy is not achieved.

The solid lines represent the absolute error (|FIPWA − EXACT|) and the dashed lines

show the exact solution after scaling by the error tolerance (10−d0 × |EXACT|). Control

occurs for buffer sizes where |FIPWA−EXACT| < 10−d0 ×|EXACT|. The numbers of boxes

are not presented as ordinal numbers because, when the boxes have arbitrary orientation,

they are not separated by an integer number of boxes. Hence, the number of boxes is a

way to normalize the separation distance in terms of the box, or group, size. By locating

where the control is lost for various parameters, a single graph was constructed to show
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the minimum buffer region that is needed to achieve a desired accuracy in complex media.

Figure 4.6 shows the control curves for accuracies of 3–13 digits. The abscissa denotes the

range of tan δ from gain (< 0) to loss (> 0), and the ordinate marks the minimum number

of buffer boxes. Hence, the control region is above a tolerance curve, and the optimizable

region lies below.

For example, the x–line denotes 7 digits of accuracy. In moderately lossy media (tan δ =

0.2), 5 buffer boxes are needed to ensure 7 digits. For fewer boxes, the accuracy loses digits

of precision. In a high gain medium (tan δ = −0.7) for the same tolerance, less than a single

buffer box is sufficient. It is important to remember that these charts do not show control

versus no control. In highly lossy media, and a target of 9 digits of accuracy, the number of

boxes needed is off the chart. However, the actual accuracy achieved is 6 digits, and may be

improved, or optimized.
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Figure 4.6: Control regions for small boxes. The relative error is used to determine con-
trollability (as in Fig. 4.5). Translation distance is normalized by box size and the control
region identifies when arbitrary accuracy can be achieved. The optimizable region shows
where the error is acceptable, but arbitrary accuracy is not achievable.

Figure 4.7 presents the same type of control chart for large boxes. The error for large

boxes is seen to be highly controllable in active media, but not so in lossy media. The
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accuracy loses between 4 and 8 digits (not shown on graph) for target accuracies of single

and double precision, respectively. Also, the curves nearly overlay each other, suggesting

that tan δ is the most influential factor in controlling the error for large groups.

The optimizable region can be used by simply requiring a higher accuracy than what is

truly needed. Although some digits will be lost, single-digit precision can still be reached.

Based on the control and optimizable regions, 2–D FIPWA is a viable solution for use in the

Sommerfeld integrals in layered-media problems. Hu and Chew [14] used the 2-D multipole

translator while noting that it can be replaced with the 2-D FIPWA translator if proper

attention is given to the SDP in complex media. These results suggest that the 2-D FIPWA

for complex media can be used in the 3-D FIPWA translator for layered-media.
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Figure 4.7: Control regions for large boxes. Relative error for large boxes is not controllable
for highly lossy (tan δ > 0.2) media.

Effective broadband behavior of kρ

In the above results, k was assumed to have constant magnitude. In practice, kρ will take

on varying magnitudes and effective material parameters (lossless, lossy, or active) because

kρ = k sin θ for complex θ. Effectively, this causes kρ to range from low to high frequency.
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Extrapolation functions

It is important to note that these results were generated with the sinc extrapolation function.

Alternative extrapolation may be more useful and should be considered for enabling high

accuracy in the cases of small boxes.

4.5 Summary

In this chapter, the error sources of the 2-D plane-wave translator for complex media were

shown to be controllable. Furthermore, regions of strict control and partial control (opti-

mizable) were identified. The error for the 2-D FIPWA in complex media is controllable for

low-loss problems, and while not completely controlled for high losses, it is still acceptable

for practical applications. In contrast, the active media cases are highly controllable. The

difference is due to the topography surrounding the steepest descent path. In lossy material,

the constant magnitude path interferes with extrapolation from real samples to the M–SDP,

but in active media, the constant magnitude path does not influence the extrapolation. Thus,

the active case is more accurate than the lossy case.

Control regions were also presented for small and large group sizes in complex media.

In a low loss medium (0 < tan δ < 0.2), the small boxes require several buffer boxes for

arbitrary precisions. However, for practical applications, where 2–3 digits are required, a

single buffer box is sufficient. For highly lossy cases (tan δ > 0.2), several buffer boxes are

still needed. In contrast, large buffer boxes lose accuracy only for large losses. However, the

error is still acceptable for most applications.

In consideration of large, layered-medium problems, the 3-D FIPWA is a natural for-

mulation for the Sommerfeld integrals. The 2-D FIPWA translator provides a simpler and

accurate option to the traditional multipole translator, when used as the 2-D Green’s func-

tion in 3-D FIPWA.
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CHAPTER 5

MULTIPOLE-FREE ALGORITHM

5.1 Introduction

Scattering by objects over or embedded in layered media is difficult and time consuming

to solve with integral equation solvers because the Green’s function is expressed in terms of

complicated Sommerfeld integrals. In addition, scattering problems are often large, requiring

upwards of millions of unknowns. Several methods have been developed for this class of

problem, but most rely on the multilevel paradigm, as first proposed by [11], and implemented

in the multilevel fast multipole algorithm (MLFMA) [5,6]. Recent work on fast algorithms for

layered-medium problems include higher order hierarchical basis functions [32], the discrete

complex image method (DCIM) with MLFMA [15, 16], and steepest descent path integrals

with the fast inhomogeneous plane wave algorithm (FIPWA) [10,14].

In [32], the goal is to reduce the number of unknowns, N , to achieve a faster solution.

To reduce N , the target is meshed with curvilinear quadrilateral patches, and the basis

functions are Legendre polynomials. This allows the higher order basis functions to be

adapted to patches that span more than one medium. The computational complexity is

higher than MLFMA with Rao,Wilton, Glisson (RWG) basis functions [18], but the number

of unknowns can be made significantly smaller with the curvilinear patches. However, the

method is only beneficial to geometries that can be represented with few curvilinear patches

and the computational complexity is still at least O(N 2) with an iterative matrix solver.
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In [15], MLFMA was extended from earlier work [33] with the fast multipole algorithm, in

which complex images were computed with approximate reflection coefficients. Additionally,

the multipole expansion needed a prohibitive number of terms for sources that reside in

highly lossy media. The later work extended FMA to MLFMA, and achieved O(N log N)

complexity of MLFMA. However, the cost to compute the complex images was equal to the

free space case, and increased memory requirement up to 50 %.

The most recent work by the same group introduced parallel algorithms to solve scatter-

ing by multiple scatterers [16]. In addition, a new MLFMA technique was proposed where

one solves the scatterering solutions on separate processors, and then iteratively sums con-

tributions. These approaches, as well as the next, still rely on the multipole expansion of

the Green’s function. Yet, FIPWA allows a simpler formulation for removing the multipole

expansion [10,14,22].

FIPWA was presented as an alternative to MLFMA and was shown to achieve O(N log N)

complexity in memory and processing time. In FIPWA, the spectral dyadic Green’s function

for layered media achieves high accuracy because it rigorously treats the reflection coeffi-

cients, and still has fast computation of the dyadic components by use of steepest descent

path integrals. In the case of the layered media problem, FIPWA only costs up to 20 % more

in memory than the free space case.

FIPWA still relies on the multipole expansion, yet the formulation is highly adaptable

to a completely multipole-free form. The previous chapters laid the groundwork for the

multipole-free fast algorithm, with the implication that one can simply substitute the 2-D

FIPWA translator for the 2-D FMM translator.

Hence, the goal of this chapter is to demonstrate the multilevel multipole-free fast al-

gorithm. In addition, the advantages and disadvantages are discussed for a simple black

box substitution of the proposed translator in the Multipole-Free Fast Inhomogenous Plane-

Wave Algorithm (ML-FIPWA), and the new multipole-free algorithm is validated by com-
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parison to FIPWA with a benchmark problem. Finally, ML-FIPWA is demonstrated for a

larger complex target and shown to retain O(N log N) complexity in total memory cost and

matrix-vector product processing time.

5.2 Formulation

5.2.1 Combined field integral equation

The multipole-free fast algorithm is implemented in the multipole-free fast inhomogeneous

plane-wave algorithm (MF-FIPWA) as a method of moments (MOM) solution to the com-

bined field integral equation (CFIE). Acceleration of the (MOM) matrix solution is achieved

with the conjugate gradient iterative matrix solver and the multilevel paradigm of MLFMA

and FIPWA. The CFIE is expressed as a combination of the electric and magnetic field in-

tegral equations (EFIE and MFIE, respectively) as CFIE = αEFIE +(1−α)MFIE, and the

coupling parameter α is typically set to 0.5. Each integral equation component is succinctly

expressed in terms of integral operators as

EFIE : −n̂ × Einc(r) = n̂ × L(J(r)), (5.1)

MFIE : −n̂ × Hinc(r) = n̂ ×K(J(r)), (5.2)

where J(r) is the unknown electric current density and n̂ is the unit normal to the surface,

S, of the scatterer. Finally, the integral equation operators L and K are expressed in terms

of the symmetric dyadic Green’s function G(r, r′) as

L [J(r)] =

∫

S

G(r, r′) · J(r′), ∀r ∈ S (5.3)

K [J(r)] = ∇×
∫

S

G(r, r′) · J(r′)dS ′ − 1

2
J(r). (5.4)

The components of G(r, r′) for layered media were presented in [19] as the sum of direct,

TE, and TM scalar Green’s functions, and more recently rederived in a more elegant manner
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in [34]. The components are repeated here for completeness.

α̂ · G · α̂′ = (α̂s · α̂s
′)(gP − gTE,R) + αzα

′
z(g

P + gTM,R)

+
1

k2
1

α̂ · ∇∇ · α̂′′gTM,R

+α̂ · ∇s∇s · α̂′′gEM, (5.5)

with

α̂ = α̂s + ẑαz (5.6)

α̂′ = α̂′
s + ẑα′

z (5.7)

α̂′′ = −α̂′
s + ẑα′

z (5.8)

and

gβ =





iωµ
4π

eik|r−r
′|

|r−r′| =
∫
Γθ

dθ W P (θ)eiks·(rs−rs
′)eikz |z−z′|, β = P

∫
Γθ

dθ WTM(θ)H
(1)
0 (kρρ)eiks·(rs−rs

′)eikz(z+z′), β = TM
∫
Γθ

dθ WTE(θ)H
(1)
0 (kρρ)eiks·(rs−rs

′)eikz(z+z′), β = TE

(5.9)

for the primary, TM reflected, and TE reflected components, and gEM = ( 1
k2

ρ
gTE − gTM). Γθ

is the path of integration in the complex θ-plane. The weight functions are

WP(θ) = −ωµ0

8π2
k sin θ (5.10)

WTM(θ) = −ωµ0

8π2
k sin θ R̃TM(k1z, . . . , kNz) (5.11)

WTE(θ) =
ωµ0

8π2
k sin θ R̃TE(k1z, . . . , kNz), (5.12)

where kz = k cos θ, kiz =
√

k2
iz − k2

ρ and R̃ is the generalized reflection coefficient for the

N -layer medium, as defined in [1].

The unknown current is expanded with the well-known Rao, Wilton, Glisson (RWG)

basis functions [18],

J(r) =
N∑

n=1

InΛn(r), (5.13)

to form the matrix equation

N∑

n=1

(
ZE

mn + ZM
mn

)
In = Vm. (5.14)
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The matrix and vector elements are

ZE
mn =

ikη

4π

∫

S

dSΛm(r) ·
∫

S

G(r, r′) · Λn(r′)dS ′ (5.15)

ZM
mn = −

∫

S

dS
Λm · Λn

2
+

1

4π

∫

S

dSΛm(r) · n̂ ×∇×
∫

S

g(r, r′)Λn(r′)dS ′ (5.16)

Vm = −
(

α

∫

S

Λm(r) · Einc(r)dS + η(1 − α)

∫

S

Λm(r) · n̂ × Hinc(r)dS

)
. (5.17)

5.2.2 Multilevel multipole-free fast algorithm

To achieve a multilevel algorithm, the scalar components of G are factored and diagonal-

ized in a recursive fashion. In MF-FIPWA, the initial factorization is generated with the

multipole-free 2-D translator in the same fashion as FIPWA uses the 2-D FMA transla-

tor [10,14]. Then, successive factorization is aided with interpolation between levels as

gβ (rj, ri) = βt
jJlmax

· It

1 · βJlmaxJlmax+1
· It

2 · · ·

βJL+1JL
· TJLIL

· βILIL+1
· · · I2 · βIlmax+1Ilmax

· I1 · βIlmax i,

where gβ represents the TM, TE, or TEM component, β is the shifted radiation and re-

ceiving patterns, T is the diagonalized translator between patterns, and I and I t represent

interpolation and anterpolation matrices.

In addition, each component of the dyadic Green’s function represents the direct and

reflected contributions in the form of generalized reflection coefficients [1], and Sommerfeld

integrals. Calculation of the Sommerfeld integrals is accelerated with integration along the

steepest descent path (SDP) as shown in Fig. 2.6, page 14 [22, 23]. By rigorously treating

the Sommerfeld integral, the algorithm maintains the integrity of the physics and captures

surface wave and guided wave contributions, unlike approximations such as the discrete

complex image method [15,33].
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In [10, 14], the 3-D translator was constructed with the 2-D fast multipole algorithm. It

is repeated here for clarification.

TJI,3Dfipwa(Ωs) =

∫

Γθ

dθW β (θ) eikzJI cos θTJI,fma(θ, αs)I(θ − θs), (5.18)

TJI,fma(θ, αs) =

∫ 2π

0

dα
1

2π

P∑

p=−P

H(1)
p (k sin θρJI) e−ip(α−φJI−π/2)I(α − αs), (5.19)

where Γθ is the modified steepest descent path.

In the proposed multipole-free algorithm, the 3-D translator is constructed with the 2-D

FIPWA translator, whereby no multipoles are used.

TJI,3D(Ωs) =

∫

Γθ

dθ

∫

Γα

dαW β (θ) eikzJI cos θeikρ(α)·ρ
JII(θ, α, θs, αs), (5.20)

in which the 2-D FIPWA translator is

T2Dfipwa(αs) =
1

π

∫

Γα

dαeikρ(α)·ρ
JII(α − αs), (5.21)

As in MLFMA and 3-D FIPWA, the translation and interpolation matrices are stored for

different levels in the tree, and the matrix-vector product is accelerated with computational

complexity of O(N log N).

5.2.3 Surface wave contributions and poles

When a scatterer is placed on the surface, or slightly above the layered medium, lateral

surface waves [1] are excited. In most cases, the contribution is small and can be dismissed, as

in [15,33]. Yet, the contribution is easily managed by defining paths around the appropriate

branch cut. By defining the weight function W β for the correct Riemann sheet, the additional

computational burden is negligible. This approach was demonstrated in FIPWA for layered

media and buried object problems. Complete details are given in [10,14].

Similarly, the poles due to R̃TE,TM are also easily included. When poles are present,

residue theory is used to add the contribution. Of course, an appropriate pole finding

algorithm [21] must first locate the poles, but storage and computational costs are minimal.
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In terms of fast algorithms, these approaches are unique to FIPWA and the multipole

free version, MF-FIPWA. Each is mentioned here to show how FIPWA and MF-FIPWA

capture the physical phenomena that approximation methods cannot.

5.3 Error Control

As seen in various works on error control [20,29,30,35], there are a finite set of error sources

in the fast algorithm. Typically, one strives to control the error so it decreases exponentially.

Hence, the expressions “controllable error” and “exponentially controllable error” both mean

the computational error decreases exponentially. Common to each multilevel algorithm are

controllable error sources of numerical integration and interpolation, and in MLFMA and

FIPWA, also controllable error from truncation of the multipole expansion. FIPWA and

MF-FIPWA have controllable error from interpolation and extrapolation of the radiation

patterns. For each of the error sources, error analysis has been provided in the references,

but to properly control the error, one must understand the physical significance of the source.

Hence, each of MF-FIPWA’s error sources is presented with physical interpretation.

5.3.1 Integration along the SDPs

Referring to Eq. (5.20), the integrand is interpreted as a summation of inhomogeneous plane

waves. Figure 2.6, page 14, represents the modified paths for Γθ and Γα, where points on

path II are propagating waves and points on paths I and III represent evanescent waves. To

accurately compute the double integral, each path must be of the appropriate length, and

special attention must be given to Γα.

Selecting Γα

As discussed in Section 3.2, θ = θR + iθI , so that kρ = k sin θ implies that each point on Γθ

has a corresponding path Γα. Figure 5.1 illustrates how each value of kρ has a unique SDP
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that depends on the effective complex media. To retain the accuracy of the outer integral

along Γθ, the inner integral along Γα must be computed with high accuracy.

Figure 5.1: Illustration of how kρ depends on k sin θ.

Highly accurate integration on Γα

When the double SDP is computed aside from interpolation and extrapolation in MF-

FIPWA, high accuracy is easily achieved with Gauss-Laguerre integration along paths I

and III and trapezoidal or Gauss-Legendre rules on path II. However, when interpolation

and extrapolation of the radiation patterns are included, the particular points on paths I and

III influence the accuracy of interpolation and extrapolation. The discrete form of Eq. (5.21)

is

T2Dfipwa(φs) =
1

π

Nα∑

q=1

wqe
ikρ(αq)·ρ

JII(αq − φs), . (5.22)

where φs ∈ (0, 2π), Nα is the number of quadrature points, and wq and αq are the quadrature

weights and nodes. In this form, it appears as though the 2D translator is formed by anter-

polation, or performing the inverse of interpolation, from the SDP to a set of propagating

waves. In other words, the stored translator is created by filtering the mix of propagating
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waves and evanescent waves to retain only representative propagating waves. In this light,

one can think of paths I and III as having two regions: a shallow evanescent region and a

deep evanescent region, illustrated in Fig. 5.2. The shallow waves are dominant, so more

shallow than deep waves should be used to form the translator for long distance translations.

Similarly, near translations need to retain more evanescent waves.

Under lossless conditions, the Gauss-Laguerre rule inherently selects more shallow points

when parameterizing the SDP with the real part: α(s) = s+if(s); but when the background

medium is complex, the path is defined by mapping from the real axis to the SDP with the

quadratic map −s2 = ik(β, α) · rJI′ . This causes the shallow points to become sparse and

the deep points to become dense, and poses a challenge to retaining the accuracy of the

translator. Either more points are needed in the integration rule to increase the density of

the shallow region, or alternative quadrature rules with high accuracy are needed. In this

work, Nα is increased in proportion to the length of paths I and III to achieve 15 digits

accuracy of the 2D translator.
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Figure 5.2: Illustration of the shallow and deep evanescent regions of paths I and III.
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5.3.2 Interpolation and extrapolation of radiation patterns

Interpolation

The key features of FIPWA and MF-FIPWA are interpolation and extrapolation of radiation

and receiving patterns from a stored set of samples. Along path II, the SDP is purely real

in (−π, π). Thus, sinc interpolation provides high accuracy when sampling at the Nyquist

rate of twice the bandwidth. It has been shown that the number of samples is correctly set

with the refined excess bandwith formula P = kD + 1.8d
2/3
0 (kD)1/3 [29], where P represents

the single sided bandwidth of the sinc function. As a result, interpolation on path II has

exponentially controllable error.

Extrapolation

Under lossless conditions, the sinc interpolation function can be used to extrapolate the

radiation patterns, but in MF-FIPWA, the 2-D wavenumber kρ is complex. This alters the

form of the path as discussed in [20], and makes extrapolation with high accuracy difficult.

When extrapolating the radiation patterns from the set of real samples to points in the

deep evanescent region, the integrand of Eq. (5.20) is extremely small. These contributions

can be on the order of the machine precision and add as numerical noise. Subsequently,

the extrapolation is sensitive to oversampling. To avoid extrapolation to very small values,

the path length must be shortened. Yet, shortening the path length decreases the accuracy

of the translator. Empirical studies show that it is better to use Lagrange polynomials to

extrapolate the radiation patterns to the deep evanescent waves, instead of the sinc function,

at a higher computational cost.

5.3.3 Interpolation between levels

Typically, the sampling rate for interpolation between levels in the MLFMA tree structure

is predetermined according to the bandwidth of the radiation patterns. The error has been
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shown to be exponentially controllable when the refined excess bandwidth formula is used

to set the number of samples [17]. As a matter of convenience, the radiation pattern, when

thought of as a sphere, is sampled at the same rate at each latitude, which greatly over

samples the regions near the north and south poles. This does not impede the matrix-vector

multiply because the interpolation is local with few samples, but it can create added overhead

during the setup stage of the algorithm. It is mentioned here, because this type of storage

is not optimum for the MF-FIPWA translator. This topic is discussed more in the next

chapter.

5.4 Numerical Results

5.4.1 Validating the multilevel multipole-free algorithm

Set up for validation problem

MF-FIPWA is validated by comparison to FIPWA (previously validated by comparison to

a full matrix solution [10, 14, 21]). The validation problem [21], is to compute the bistatic

radar cross section of a right circular cylinder above a two-layer medium. Figure 5.3 shows

the problem setup. The frequency is 600 MHz, and the number of unknowns is 9 708 with

5 levels and the smallest box set to λ/10. Excitation is incident from θinc = 60o, φinc = 0o,

and the observation angles are θobs = 60o, φ ∈ [0, 2π). The cylinder is placed 0.2 m above

the layered medium, and the medium parameters are ε0 = 1.0, ε1 = 2.56 with a thickness of

0.3 m, and ε2 = (6.5, 0.6). Following the error control of Chapter 4, the accuracy of the 2-D

translator is set for double machine precision, or 14 digits.

Validation of MF-FIPWA

Figure 5.4 shows the comparison between the two algorithms and a full matrix solution.

MF-FIPWA has excellent agreement for both vertical and horizontal polarizations.

51



Figure 5.3: Validation scattering case. Bistatic scattering of a right circular cylinder over
a 2-layer medium. The frequency is 600 MHz; the number of unknowns is 9 708, and 5 levels
are used.

−150 −100 −50 0 50 100 150
−10

−5

0

5

10

15

20

25

Observation angle φ [deg]

B
is

ta
tic

 C
ro

ss
 S

ec
tio

n 
[d

B
sm

]

 

 

Full matrix VV
FIPWA VV
MF−FIPWA VV
Full matrix HH
FIPWA HH
MF−FIPWA HH
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Figure 5.5: Error of FIPWA and MF-FIPWA relative to the full matrix solution. The
validation case is shown with an average relative error of 3.0%.

A quantitative comparison is made by computing the relative error of the bistatic radar

cross section. Figure 5.5 shows the relative error between FIPWA and the full matrix solver,

and for MF-FIPWA and the full matrix solver across the bistatic angles. Again, the agree-

ment is very good with an average relative error of 3.0%.

5.4.2 Scaling and efficiency

Before studying a complex target, the scaling of the multilevel multipole-free algorithm is

shown to be equivalent to FIPWA for moderate to large size spheres. As FIPWA, MF-

FIPWA achieves O(N log N) complexity in memory and processing time per matrix-vector

multiply for problem sizes of N = 10 002, 101 568, 252 300, 504 300, and 1 002 252 unknowns.

Figure 5.6 illustrates the scaling for moderately sized problems.
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Because the multilevel paradigm is used, the scaling is not a surprise. Note that all of

these results were run on a single Sun-Blade 1000 processor with 8 GB of RAM.
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Figure 5.6: Scaling of memory and processing time for matrix-vector product. Memory is
measured in MBytes and time is measured in cpu seconds.

5.4.3 Moderate sized complex target

To demonstrate the code for a complex target, the bistatic cross section is computed for

the fictitious VFY-218 above a lossy half-space (Fig. 5.7). The frequency is 100 MHz,

N = 163, 344 at 7 levels, and the dielectric constant is ε = (6.5, 0.6). Excitation is at

θinc = 60o, φinc = 0o. The agreement between FIPWA and MF-FIPWA is excellent, as

shown in Fig. 5.8, and the total computational cost is 476 MB of RAM and less than 2.5

hours for both VV and HH polarization.
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Figure 5.7: VFY-218 above lossy earth, ε = (6.5, 0.6). Note that the discretization shown
in the figure is for illustration purposes only. The aircraft is situated 1 m above the ground.
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Figure 5.8: Bistatic radar cross section of VFY-218 above lossy earth.
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5.5 Summary

The multilevel multipole-free fast algorithm is demonstrated for layered media problems

with O(N log N) complexity of memory and processing time. By carefully choosing the SDP

for the 2-D translator, the accuracy is retained under the MLFMA paradigm, and equals

FIPWA in complexity. The benefit of MF-FIPWA over FIPWA is that the translator is

simpler, and with proper implementation, can achieve faster setup.
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CHAPTER 6

COMPARISON OF FIPWA AND
MF-FIPWA

6.1 Introduction

The fast multipole algorithm (FMA) [3,4] and multilevel fast multipole algorithm (MLFMA)

[6,7] greatly advance computational electromagnetics by reducing the storage cost and com-

putational complexity of boundary integral methods to O(N log N). Applications range

from free-space radiation and scattering problems to S-parameter extraction on multilevel

chips [36]. One application of interest is electromagnetic scattering by an object in the

vicinity of a layered, or stratified, medium. Recent work showed that MLFMA is applica-

ble to the layered medium problem when combined with the discrete complex image method

(DCIM) [16,33]. This approach maintains the efficiency of MLFMA and nicely approximates

scattering contributions from the layered medium, but requires many complex image con-

tributions. Alternatively, the fast inhomogeneous plane wave algorithm (FIPWA) [14] uses

the MLFMA paradigm, but it rigorously computes the Sommerfeld integral that is inherent

in layered medium problems. Using generalized reflection coefficients, FIPWA only requires

a single image contribution from the multilayer medium, making the setup time in FIPWA

faster than MLFMA with DCIM.
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The latest work with FIPWA showed that the multipole expansion is replaceable with

the 2-D form of FIPWA to create a completely multipole-free fast algorithm for the layered

medium problem [37], called the multipole-free FIPWA (MF-FIPWA). The purpose of this

chapter is to compare the computational cost and accuracy of FIPWA and MF-FIPWA.

The chapter is organized as follows. First, the scope of the study is outlined with a brief

description of the application problem and a review of the primary computation in the

dyadic Green’s function for layered media. Second, the layered medium translation matrix

is presented for each algorithm followed by a general method to construct the matrix with

O(N) efficiency. Finally, numerical results of accuracy and setup cost show the advantages

of each algorithm and are applied in a mixed-form algorithm.

6.2 Scope of Comparison

The comparison focuses on the accuracy and efficiency of the 3-D translation matrix for

layered medium. In the MLFMA paradigm there are three types of translation matrices

[17]: outgoing-to-outgoing (O2O) shifting matrices that translate a child group to a parent

group, incoming-to-incoming (I2I) shifting matrices that translate a parent group to a child

group, and outgoing-to-incoming (O2I) matrices that translate between sibling groups. For

layered medium applications there are also O2I matrices for the layered, or stratified, medium

contribution that are denoted as O2I-SM translation matrices. The O2O and I2I matrices

are not discussed because they are already multipole-free [21].

As the bistatic scattering problem and fast algorithms are thoroughly discussed in the

references and Chapters 2–5, this chapter emphasizes how FIPWA and MF-FIPWA compute

the O2I-SM translation matrix. In the fast algorithm, the dominant computation of the

dyadic Green’s for layered media (DGLM) is still the Sommerfeld integral, but FIPWA and

MF-FIPWA accelerate the computation with simplified expressions of DGLM and steepest

descent path integrals.
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6.3 3-D translators for layered medium

Using pilot vectors, the scalar components of DGLM have been shown to depend on two

forms of the Sommerfeld integral due to TM and TE sources [19, 34]. Denoted as gTM and

gTE, they are

gTM(kr) =

∫

Γβ

dβ WTM(k cos β, z)H
(1)
0 (k sin β, ρ), (6.1)

gTE(kr) =

∫

Γβ

dβ WTE(k cos β, z)H
(1)
0 (k sin β, ρ), (6.2)

where Γβ is the modified steepest descent path in the θ-plane. The functions W TM(k cos β, z)

and WTE(k cos β, z) represent a general form for the exponential function, the generalized

reflection coefficient [1] and the associated constants.

Upon applying the MLFMA paradigm (receiving pattern, O2I-SM translator, radiation

pattern) to factor (6.1) and (6.2), the vector-matrix-vector factorization is

gγ(kr) = βjJ(θs, φs) · τ γ
JI′(θs, φs) · βI′i(θs, φs), (6.3)

where γ represents TM or TE, βjJ is a vector that represents the receiving pattern of particle

j in group J , βI′i is a vector that represents the radiation pattern of particle i in group I ′,

and τ
γ
JI′ represents the O2I-SM translation matrix from group I ′ to group J . Note that I ′

denotes the image source to follow notation in previous works on FIPWA.

6.3.1 Matrix representation of the translator

In MLFMA-based algorithms, the Green’s function is expanded in terms of plane-waves, and

specifically in MF-FIPWA, the Green’s function is expanded in terms of inhomogeneous plane

waves. Furthermore, the double integral of the O2I-SM translator represents summation of

a continuum of inhomogeneous plane waves that have direction k(β, α). Thus, the translator

is a function that is defined on a sphere in momentum, or Fourier, space. Each (β, α) pair
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represents a complex direction, resulting in a complex wave vector. Yet, it is inefficient to

construct the O2I matrices for all possible directions.

For efficiency, only real-valued angles (θ, φ) are used to represent the translator by using

interpolation and extrapolation. Figure 6.1 illustrates the set of plane-wave directions as

points on the sphere. Each sample on the sphere represents a translation direction k(θs, φs).

Hence, (θs, φs) represents a plane-wave direction emanating from group I ′ to group J .

The difference between FIPWA and MF-FIPWA becomes evident once the O2I-SM trans-

lator in (6.3) is viewed explicitly. In the next sections, the explicit forms of the FIPWA and

MF-FIPWA O2I-SM translation matrices are shown.

T(θ
s
,φ

s
) 

Figure 6.1: The 3-D tranlsator is illustrated as a sampled function on the unit sphere.
Each sample is a direction of translation during the matrix-vector multiply.
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6.3.2 FIPWA 3-D O2I-SM translator

The 3-D O2I-SM translator for FIPWA uses 2-D FMA to expand the Hankel function in

(6.1) and (6.2) as

T3Dfipwa(θs, φs) =

∫

Γβ

dβ

∫ 2π

0

dα W (β)eikz(β)·zJI′

×T2Dfma(β, α)I(β − θs)I(α − φs) (6.4)

=

∫

Γβ

dβ eikz(β)·zJI′ T̃2Dfma(β, φs), (6.5)

where

T̃2Dfma(β, φs) =

∫ 2π

0

dα T2Dfma(β, α)I(α − φs), (6.6)

T2Dfma(β, α) =
P∑

p=−P

H(1)
p (k sin βρJI′)e

ip(α−φJI′+π/2), (6.7)

W (β) is a general expression composed of the generalized reflection coefficient and constants,

I(β − θs) and I(α − φs), are interpolation functions, and

β = βR + iβI ,

α ∈ (0, 2π),

rJI′ = x̂(xJ − xI) + ŷ(yJ − yI) + ẑ(zJ + zI),

k(β, α) = k sin β(x̂ cos α + ŷ sin α) + k cos βẑ,

kz(β) = k cos βẑ.

Upon discretizing the integrals, the FIPWA O2I-SM translator becomes

T3Dfipwa(θs, φs) =

Nβ∑

q1=1

Nfipwa
α,q1∑

q2=1

wq1wq2W (βq1)e
ikz(βq1 )·zJI′

×T2Dfma(βq1 , αq2)I(βq1 − θs)I(αq2 − φs), (6.8)

T2Dfma(βq1 , αq2) =

Pq1∑

p=−Pq1

H(1)
p (kρρJI)e

ip(αq2−φJI′−π/2), (6.9)

where (wq1 , wq2) are quadrature weights, Nβ is the number of quadrature points on Γβ, Nfipwa
α,q1

is the number of quadrature points in (0, 2π), and Pq1 is the multipole truncation number.
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6.3.3 MF-FIPWA 3-D O2I-SM translator

In MF-FIPWA, the 2-D translator is the 2-D FIPWA translator [22,23]. The 3-D MF-FIPWA

O2I-SM translator is

Tmffipwa(θs, φs) =

∫

Γβ

dβ W (β)T2Dfipwa(β, φs)I(β − θs) (6.10)

T2Dfipwa(β, φs) =

∫

Γα

dα eik(β,α)·rJI′I(αq2 − φs), (6.11)

and the discrete form is

T3Dmffipwa(θs, φs) =

Nβ∑

q1

wq1W (βq1)T2Dfipwa(βq1 , φs)I(βq1 − θs) (6.12)

T2Dfipwa(βq1 , φs) =

Nmffipwa
α,q1∑

q2=1

wq2e
ik(βq1 ,αq2 )·rJI′I(αq2 − φs) (6.13)

where Nβ is the number of quadrature points on Γβ, and Nmffipwa
α,q1

denotes the number of

quadrature points on Γα.

6.3.4 Integration differences between FIPWA and MF-FIPWA

Outer integral
∫
Γβ

dβ

Figure 6.2 shows how the double integrals of FIPWA and MF-FIPWA differ. The outer SDP

integral
∫
Γβ

is the same for both, and is shown in Figure 6.2(a). There are a fixed number

of points on paths I and III. On path II the number of quadrature points scales with the

size of the group, D, and the number of samples in {θ : 0 < θs < π}. The excess bandwidth

formula P = kD + 1.8d
2/3
0 (kD)1/3 determines the number of samples Ns = 2P needed to

represent the bandwidth with d0 digits of accuracy. Referring to (6.8), the total number of

quadrature points can be expressed as Nβ = C1 + C2P , where C2 = 2 following Nyquist

sampling theory, and C1 = 30 is sufficient to integrate with 3–4 digits of accuracy.
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FIPWA—inner integral
∫ 2π

0
dα

Figure 6.2(b) shows the path of integration for the inner integral of FIPWA. The path is

always on the real axis in (0, 2π), but the number of integration points is proportional to the

multipole expansion number, Pq1 ∝ kρD2D = kρ

√
2
3
D, where kρ = k sin βq1 . To distinguish

between different sets of integration points for 0 < α < 2π, N fipwa
α,q1

denotes the number

of quadrature points for each q1. Additionally, Pq1 is the 2-D bandwidth of the group,

so integration on path II with the trapezoidal rule or Gauss-Legendre rule is exact when

Nfipwa
α,q1

= Cq1Pq1 = 2Pq1 . Note that 2Pq1 is different from the number of samples for φs.

The number of quadrature points in the double integral of FIPWA is
∑C1+2P

q1=1 2Pq1 and the

integrand contains a multipole expansion of size Cq1Pq1 = 2Pq1 .

MF-FIPWA—inner integral
∫

Γα
dα

Referring to (6.12), the integrand of MF-FIWPA is simpler than the multipole expansion

of FIPWA, but the integration path in the α-plane is a steepest descent path, shown in

Fig. 6.2(c). Like the SDP in the β-plane, the inner SDP integral is separated into three

parts, of which two have fixed numbers of quadrature points (paths I and III), and path

II has a number of points that is proportional to the 2-D bandwidth Pq1 . The number of

quadrature points on Γα is Nmffipwa
α,q1

= C1,q1 + C2,q1Pq1 , where empirical results show that

30 < C1,q1 < 80 achieves high accuracy on paths I and III and C2,q1 ∝ 2 π
α0

5 2 π

sin−1(
D2D
ρ
JI′

)
.

The last coefficient, C2,q1 , is set according to Nyquist sampling theory so that the interval

is sampled at twice the bandwidth of the integrand. This is similar to the inner integration

of FIPWA, but the interval of path II is −π/4 < α < π/4 because the interval corresponds

to the field of view from one group to another with ρJI′ =
√

2D2D. Thus, the spacing of the

quadrature points is the same as in FIPWA, but at most, only one-fourth of the integration
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points are needed. This reduces the cost to compute the integration of path II of MF-FIPWA

as compared to the inner integral of FIPWA.

In addition, C1,q1 , the number of integration points along paths I and III, varies because

the path must be truncated according to the size of the group and the value of kρ. To

achieve at least single precision accuracy in the integration of paths I and III, C1,q1 varies

from 30–80, but numerical results showed that the accuracy of all 2-D translators does not

need high accuracy, so in some cases C1,q1 < 30. Details of the numerical integration method

are discussed in Chapter 7.

Finally, it is worthwhile to note the similarity between the integrand of 2-D FIPWA and

the integrand of 3-D FIPWA for free space. In the latter, the translator is [21]

T free space
3D,fipwa (θs, φs) =

∫

Γβ

dβ

∫ 2π

0

dα f(β)I(β − θs)I(α − φs) (6.14)

=

∫

Γβ

dβ f(β)I(β − θs)

∫ 2π

0

dα I(α − φs) (6.15)

=

∫

Γβ

dβ f(β)I(β − θs)τ2D(φs), (6.16)

where f(β) = ik
2π

sin β, and τ2D(φs) =
∫ 2π

0
dα I(α − φs). When I(α − φs) is the sinc or

Dirichlet interpolation function, τ2D(φs) = 2π
Nφ

, where Nφ is the number of sample points in

the φ coordinate. The analytic solution of the inner integral reduces the double integral to

a single integral. For free-space problems, the 3-D FIPWA O2I matrix is much faster to set

up than the 3-D MLFMA O2I matrix.

However, in the layered-medium translator, the 2-D FIPWA translator in Eq. (6.11) does

not have an analytic solution, requiring double numerical integration to construct the 3-D

MF-FIPWA translator. Depending on the desired accuracy of the integration and optimiza-

tion methods, in some cases MF-FIPWA is faster than FIPWA in setting up the O2I-SM

translation matrix, and in other cases, FIPWA is faster.
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6.3.5 Summary of integration differences

The discrete forms of FIPWA and MF-FIPWA revealed that the differences in the double

integration are contained within the inner integration. In FIPWA, the integrand is a product

of a multipole sum and an interpolation function that is integrated along the real axis in a

straightforward fashion. In MF-FIPWA, the integrand is the product of a complex exponen-

tial function and either an interpolation or an extrapolation function, and the integration

path is along the SDP.

In other words, the 2-D translation matrix in FIPWA has costly multipoles, simpler

integration points than MF-FIPWA. Hence, in some cases the 2-D translation matrix is

more expensive to compute in FIPWA than in MF-FIPWA and vice-versa. Also, FIPWA

and MF-FIPWA have similar forms for the translation matrix that is constructed in the same

fashion for both algorithms. The next section examines the cost to construct the O2I-SM

matrix for FIPWA and MF-FIPWA.

6.4 Construction Method for O2I-SM Translator

6.4.1 Scaling with problem size

It is often desirable to consider the cost to construct the matrix in terms of the number of

unknowns, N , of the surface scattering problem. This can be done for surface scattering

problems because the discretization of the surface is proportional to the spatial bandwidth

of the scatterer. Hence, the number of samples needed to store the translation matrix scales

according to N .

For surface scattering problems, if P 2 represents the number of samples needed to con-

struct the translation matrix, and P 2 ∝ (kD)2, by the excess bandwidth formula, then

N ∝ P 2. In fact, it is well known that N is related to the spatial bandwidth (kD)2 [11, 38],

meaning that the total construction cost scales according to N . Furthermore, in the previous
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section Nβ, Nfipwa
α,q1

, Nmffipwa
α,q1

, and Pq1 were shown to be proportional to P , so that the total

setup cost of FIPWA and MF-FIPWA are related to N .

6.4.2 Efficient construction method

The total cost to construct the O2I-SM matrix is proportional to the number of samples

stored in the translation matrix and the cost to construct a single entry. For each angular

direction, the excess bandwidth formula sets the angular spacing and the number of samples

in each angular coordinate.

Letting Nθ equal the number of samples in the θ coordinate, and Nφ,j equal the number of

samples in the φ coordinate at latitude θj, the construction of the FIPWA and MF-FIPWA

O2I-SM translation matrix are shown to scale as O(N 1.5), as N → ∞.

Starting with a straightforward method to construct the matrix:

Nθ∑

j

Nφ,j∑

k

T (θj, φk,j), (6.17)

where T (θj, φk,j) is defined by either Eq. (6.4) or (6.10), the cost is greatly reduced by

oversampling the radiation patterns, and in turn, storing more samples in the translation

matrix. Referring to the illustration of the translator in Fig. 6.1, fewer samples occur near

the poles of the sphere. Yet, in FIPWA and MF-FIPWA, the number of samples at each

latitude equals the number of samples at the equator. By fixing the number of samples,

with the exception of the poles on the sphere, the translation matrix is rectangular of size

(Nθ − 2) × Nφ.

With Nφ constant for each latitude, and consequently for each value of β, it is efficient

to compute the summations in Eqs. (6.17), (6.8) and (6.12) in two stages. This method has

previously been implemented in FIPWA [21], but has not been reported. Here, the derivation

follows that of [39].
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Figure 6.2: Integration paths used to construct O2I-SM translator. (a) Integration path of
outer integral in (6.4) and (6.10). (b) Integration path of inner integral for (6.4) (FIPWA).
(c) Integration path for inner integral of (6.10) MF-FIPWA).
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Given the translator in Eq. (6.4) or (6.10), it can be shown that the Green’s function is

equal to the sum of the stored samples in the special case of

rji = rjJ + rJI′ + rI′i, |rjJ |, |rI′i| → 0. (6.18)

In other words, the plane-wave expansion of the translation matrix is equivalent to the scalar

Green’s function when evaluated with rJI′ .

Upon substituting Eq. (6.8) or (6.12) into (6.17), and simplifying the notation by using

only the indices as arguments of the function, the expansion of the Green’s function is

g(rJI′) =

Nθ∑

j=1

Nφ∑

k=1

Nβ∑

m=1

Nα,m∑

n=1

W (n,m)I(n, k)I(m, j), (6.19)

=

Nβ∑

m=1

Nα,m∑

n=1

W (n,m)

Nφ∑

k=1

I(n, k)

Nθ∑

j=1

I(m, j) (6.20)

=

Nβ∑

m=1

Nα,m∑

n=1

W (n,m)Ĩ(n)Ĩ(m), (6.21)

where Ĩ(n) =
∑Nφ

k I(n, k) and Ĩ(m) =
∑Nθ

j I(m, j).

Per the discussion in Section 6.3.4, it appears that Nβ scales as O(
√

N) because the

integration of path II scales with the bandwidth. However, interpolation can be computed

with only a few nearby values, i.e., local interpolation, and results in high accuracy [21]. In

practice, Nβ is a constant and does not scale with N .

Therefore, the translation matrix can be constructed at a cost less than

Cost: ≈ O(max(Nθ, Nφ, Np) · max(Nα,m)) (6.22)

≈ O(
√

N ·
√

N) = O(N), (6.23)

where Nθ, Nφ, Np and Nα,m are all proportional to
√

N .

Following the above method, the general procedure to construct the O2I-SM translation

matrix in FIPWA or MF-FIPWA is
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1. Construct Γβ,

2. Construct I(β − θs) for s = 1, . . . , Nθ,

3. Construct τ2D(β, φs) for s = 1, . . . , Nφ,

Construct Γα,

Construct I(α − φs) for s = 1, . . . , Nφ,

Assemble τ2D(β, φs).

4. Assemble T3D(θs, φs).

Depending on the number of integration points on Γα, MF-FIPWA is constructed faster

than FIPWA and vice-versa for a given accuracy setting. Typically, large boxes require such

a large number of multipoles and quadrature points that MF-FIPWA is computed faster

at the highest levels in the MLFMA tree. On the other hand, when boxes are very small,

few multipoles and integration points are needed so that FIPWA is faster than MF-FIPWA.

Results of the accuracy and setup cost are shown in the next section.

6.5 Numerical Results

In this section, the accuracy and setup time of the O2I-SM translation matrices are compared.

To generate comparison data, several scattering problems are set up to represent a random

set of translation matrices of various sizes. The bistatic radar cross section is computed for

moderate to large sized spheres that are placed above a lossy half-space.

Table 6.1 lists the problem sizes, frequencies, and number of levels for the various cases.

In each case, the half-space has ε = (6.5, 0.6), the sphere is located 0.2 m above the half-space,

and the smallest box in the tree is 0.10 λ.
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Table 6.1: List of scattering examples and set up parameters.

Number of Unknowns

10 092 101 568 252 300 504 300 1 002 252 2 007 372

Frequency (GHz) 0.297 0.943 1.482 2.099 2.959 4.184

Maximum levels 5 6 7 8 8 9

6.5.1 Accuracy of spectral Green’s function expansion

FIPWA and MF-FIPWA use the dyadic Green’s function for layered media (DGLM), but the

core computation is the Sommerfeld integral for TM and TE sources, denoted as gTM and

gTE. Each scalar component of DGLM contains gTM, or gTE, or both. Also, the TM and TE

O2I-SM translation matrices are easily shown to represent gTM and gTE when the radiation

patterns are omnidirectional. Therefore, let gγ
SIP represent the Sommerfeld integration path

(SIP), and let gγ
FIPWA, and gγ

MFFIPWA represent the FIPWA and MF-FIPWA approximations

to gγ
SIP, respectively, where γ is TM, or TE or d for direct.

To compute the error in FIPWA and MF-FIPWA, the scattering cases in Table 6.1 are

used to simulate a variety of translators of different sizes and orientations. In each case,

the box size is normalized by the wavelength so that translators of different problems can

be compared. The error estimate of FIPWA and MF-FIPWA is based on the special case

when the generalized reflection coefficients are set to unity. In this case, gd
SIP = gd

FIPWA =

gd
MFFIPWA = g0 = eikr/r. This method is similar to calibrating a measurement system where

the system error is accounted for and understood to provide a limitation to the accuracy.

Using the root mean square error (RMSE), the error is determined for each box size that

corresponds to a different level in the MLMFA tree. The error is

RMSEa =

√√√√ 1

Na

Na∑

n=1

|gγ − g0|2, (6.24)

where Na is the number of boxes of size a, and γ is either SIP, FIPWA, or MF-FIPWA.
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Table 6.2 summarizes the error estimate for box sizes of 0.10–12.8 λ. For each box size,

the translators from all cases in Table 6.1 are grouped together regardless of separation or

angular orientation. Each group has Na boxes. The Sommerfeld integral is independent of

the box size and results in a nearly constant RMS error. The RMS error represents the overall

integration error in computing gd
SIP. FIPWA (gd

FIPWA) depends on the box size and shows

better accuracy than SIP for large boxes, but it loses accuracy as the box size decreases,

indicating low frequency breakdown. These results establish the usable range of box sizes

for FIPWA. The smallest box size should be larger than or equal to 0.10 λ.

Table 6.2: RMS error of O2I-SM translator by box size. SIP, FIPWA and MF-FIPWA are
compared to g0 = eikr/r. The box size a is normalized to wavelengths and Na is the number
of translators per box size.

g0

a (λ) Na gd
SIP gd

FIPWA gd
MFFIPWA

12.80 105 7.82e-04 2.75e-06 2.37e-04

6.40 727 3.32e-05 2.23e-06 1.10e-03

3.20 1 872 3.75e-05 2.66e-05 7.93e-03

1.60 4 334 8.37e-05 1.90e-04 1.90e-04

0.80 8 873 1.03e-04 9.12e-04 9.12e-04

0.40 18 033 1.27e-04 3.23e-03 3.22e-03

0.20 36 266 1.34e-04 7.12e-03 7.06e-03

0.10 72 370 1.35e-04 4.32e-01 1.13e-02

MF-FIPWA behaves only slightly different from FIPWA. For large boxes, the accuracy is

less than MF-FIPWA, and for small boxes, the accuracy is slightly better than FIPWA. The

reason is because the accuracy of the 2-D translation matrix in MF-FIPWA depends directly

on the number of samples used to store the translation matrix, while it does not in FIPWA.

The details are deferred to the next chapter because they are related to optimization of the

interpolation and extrapolation. In addition, the better accuracy for the smallest box size

suggests that low frequency breakdown of MF-FIPWA occurs at smaller boxes than FIPWA.
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This last point indicates that there is potential to use MF-FIPWA for even smaller boxes

before low frequency breakdown occurs.

6.5.2 Accuracy of solution

The accuracy of the scattering solution is compared in two ways. First, direct comparison of

the scattering solutions of FIPWA and MF-FIPWA are presented for various spheres above a

lossy halfspace. Second, the number of iterations needed to achieve a residual error of 0.001

is shown to be nearly equal for all cases, implying that the accuracy of the MF-FIPWA

translator is equivalent to the FIPWA translator.

Scattering results when the smallest box is λ/10.

Here, the first comparison is of the bistatic scattering solutions. Figure 6.3 compares the

FIPWA and MF-FIPWA solutions of the scattering of a 1-m sphere with N = 101 568 un-

knowns. In each algorithm, the smallest box size is λ/10 at 1.887 GHz. Excellent agreement

is observed between the two solutions. As mentioned previously, when the smallest box in

the MLFMA-tree is close to λ/5, the solution is more accurate. By comparing the worst

case settings, the agreement is expected to be even better for larger sizes of the smallest box.

Typically, the box size is set between λ/5 and λ/10.

Scattering results when the smallest box is λ/5.

To gauge the difference more quantitatively, Figure 6.4 shows the same results when the

smallest box size is λ/5. The results have strong agreement for each polarization. However,

to obtain a better perspective of the bistatic solution, the relative error between FIPWA

and MF-FIPWA is shown in Figure 6.5, page 74. The mean error is less than 1.0% for all

observation angles and demonstrates the error controllability of the multipole-free algorithm.
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Figure 6.3: Comparison of bistatic solutions when smallest box size is λ/10. Frequency is
0.943 GHz, N = 101 568 with 6 levels, and ε = (6.5, 0.6).

−150 −100 −50 0 50 100 150

−10

0

10

20

30

40

Observation angle [deg]

B
is

ta
tic

 R
C

S
 [d

B
sm

]

FIPWA−VV
MF−FIPWA−VV
FIPWA−HH
MF−FIPWA−HH
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Scalability of error control

Ideally, the relative error between the two algorithms should not increase as the problem size

increases. The full set of data is presented in Appendix B, but here, the global relative error

is plotted versus the size of each problem in Figure 6.6. The global relative error is defined

as

global relative error =

∑Nφ

n=1
|σMF-FIPWA(φn)−σFIPWA(φn)|

PNφ
n=1 σFIPWA(φn)

Nφ

, (6.25)

where Nφ are the number of bistatic angles, and σMF-FIPWA(φn) is the scattering solution at

the nth sample of φ.

The global relative error remains less than 10% for all sizes, and this comparison is for

the smallest box size of λ/10. In other words, the difference in the scattering solutions for

FIPWA and MF-FIPWA is less than 10% for low accuracy settings. When using a larger

size for the smallest box, the global relative error is less than 2%.
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6.5.3 Efficiency in setup and matrix solver

As shown in Section 6.4, the time to construct the complete O2I-SM translation matrix

scales as O(N) for FIPWA and MF-FIPWA, and the memory cost scales as O(N).

For various cases of the spheres used in Chapter 5, Tables 6.3 and 6.4 present the time

and memory usage. Table 6.3 lists the memory costs and setup times for MF-FIPWA and

Table 6.4 shows the costs for FIPWA. These results have not been previously reported, so

results are shown for each algorithm for several problem sizes.

In comparing results from the two tables, the total cost of the outgoing-to-incoming

translators (O2I) for free space has the same memory cost, because this part of the algorithm

is identical for FIPWA and MF-FIPWA. Also, the storage cost of the O2I-SM translation

matrix is the same for each algorithm because the data structures are the same, resulting in

equivalent costs to compute the matrix-vector (mat-vec) multiply.
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Table 6.3: MF-FIPWA construction cost of O2I-SM matrices when a = λ/10. Results for
various 1-m spheres.

Number of unknowns

1 200 10 092 101 568 250 300 500 300 1 002 252

Frequency (GHz) 0.103 0.297 0.943 1.481 2.099 2.959

Max level 3 5 6 7 8 8

O2I (MBytes) 0.407 2.312 5.357 15.380 50.653 50.653

O2I-SM (MBytes) 1.879 11.989 89.307 212.113 421.629 782.526

O2I (CPU sec) 0.9 3.0 10.7 83 917 917

O2I-SM (CPU sec) 33 131 475 1 057 1 572 2 420

Mat-vec (CPU sec) 0.10 1.3 15 41 77 152

Iteration (CPU sec) 0.21 2.5 30 81 149 295

Niter VV 33 35 39 44 52 55

Niter HH 33 35 39 44 52 55

Total memory (MB) 5.8 43.7 387 962 2 002 3 847

Total run time (CPU sec) 263 1 405 1 039 1 671 122 250 247 033

Table 6.4: FIPWA construction cost of O2I-SM matrices when a = λ/10. Results for
various 1-m spheres.

Number of unknowns

1 200 10 092 101 568 250 300 500 300 1 002 252

Frequency (GHz) 0.103 0.297 0.943 1.481 2.099 2.959

Max level 3 5 6 7 8 8

O2I (MB) 0.423 2.312 5.357 15.380 50.653 50.653

O2I-SM (MB) 1.879 11.989 89.307 212.113 421.629 782.526

O2I (CPU sec) 0.7 3.0 10.7 84 918 900

O2I-SM (CPU sec) 5.0 21.6 90.3 220 672 1 060

Mat-vec (CPU sec) 0.11 1.3 16 41 77 152

Iteration (CPU sec) 0.21 2.5 30 81 149 295

Niter VV 33 35 39 44 52 55

Niter HH 33 35 39 44 51 55

Total memory (MB) 5.8 43.7 387 962 2 002 3 847

Total run time (CPU sec) 234 1 290 619 949 121 253 244 049
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The differences occur in the setup and total run times for the O2I-SM translator be-

cause the 2-D translation matrix has higher integration cost in MF-FIPWA than FIPWA.

Optimization can be performed, but that is deferred to the next chapter.

Tables 6.5 and 6.6 list similar results when the smallest box size is a = 0.2λ. From

MLFMA, it is known that larger sizes of the smallest box result in better accuracy in the

solution. However, the larger size requires more memory at the leafy level, the dominant

cost of memory and computation during the setup stage. Hence, only values of N up to

250 000 unknowns were used in Table 6.5 to illustrate the cost.

Table 6.5: MF-FIPWA construction cost of O2I-SM matrices when a = λ/5. Results for
various 1-m spheres.

Number of unknowns

1 200 10 092 101 568 250 300

Frequency (GHz) 0.206 0.594 1.887 2.963

Max level 3 5 6 7

O2I (MB) 0.977 5.251 15.275 50.539

O2I-SM (MB) 3.397 19.252 130.57 320.274

O2I (CPU sec) 1.1 11 84 910

O2I-SM (CPU sec) 40 156 722 2 094

Mat-vec (CPU sec) 0.22 2.5 59 85

Iteration (CPU sec) 0.43 4.9 31 162

Niter VV 17 25 39 43

Niter HH 17 25 38 42

Total memory (MB) 11.7 86.88 770 1 949

Total run time (CPU sec) 266 2 096 22 476 59 674

Again, the cost to store the translators, and the time to perform the matrix-vector

multiply are the same. Only the setup time is compared. For N = 1 200, the O2I-SM

translator for MF-FIPWA takes 6.6 times longer to set up than the FIPWA translator. For

N = 1 002 252, the set-up time for MF-FIPWA takes 2.3 times longer than FIPWA.
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Table 6.6: FIPWA construction cost of O2I-SM matrices when a = λ/5. Results for various
1-m spheres.

Number of unknowns

1 200 10 092 101 568 250 300

Frequency (GHz) 0.206 0.594 1.887 2.963

Max level 3 5 6 7

O2I (MB) 0.977 5.251 15.275 50.539

O2I-SM (MB) 3.397 19.252 130.57 320.274

O2I (CPU sec) 1.1 11 84 913

O2I-SM (CPU sec) 10 50 273 1 010

Mat-vec (CPU sec) 0.23 2.6 60 84

Iteration (CPU sec) 0.43 4.9 30 163

Niter VV 17 25 38 43

Niter HH 17 25 38 42

Total memory (MB) 11.7 86.88 770 1 949

Total run time (CPU sec) 236 1 997 22 041 58 814

Scaling of setup time by box size

To illustrate how the algorithms compare in setting up the O2I-SM translation matrix,

Figure 6.7 shows the mean time in CPU seconds needed to construct the O2I-SM translation

matrix per box size. Box sizes range from 0.1–12.8λ, where the largest box size is based on a

two-million unknown sphere with 9 levels. MF-FIPWA (solid line with diamond) has lower

setup time than FIPWA (solid line with circles) when boxes are larger than 8.0λ. Also, note

that the curves for MF-FIPWA and FIPWA have shallow slopes when the boxes are small.

In these cases, the SDP integration on paths I and III of Γβ uses a fixed number of points.

As the box size increases, the integration along path II dominates the computation and the

slopes of the curves increase in proportion to the box size.

The hashed line represents the setup time for MF-FIPWA with single precision accuracy

in the 2-D integration. MF-FIPWA still has longer setup time for the smallest boxes, but

it is faster when the box size is greater than 2.0λ. These results show that one could use
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MF-FIPWA at the top levels of the tree and FIPWA at the lower levels of the tree to slightly

improve the O2I-SM matrix setup time. Finally, note that the setup times scales with N .

The dotted line is proportional to the box edge size a which is proportional to N .
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Figure 6.7: Setup time for O2I-SM translation matrix by box size. Boxes are set according
to problem sizes from N = 10 092 to N = 2 007 372 and range from 0.1λ to 12.8λ in size.

Memory storage cost

Besides the setup time, the storage cost is also evaluated. Figure 6.8 illustrates the equivalent

storage cost of FIPWA and MF-FIPWA. As expected, the storage scales as O(N).

6.5.4 Mixed-form algorithm

As in mixed-form FMA, both FIPWA and MF-FIPWA can be used to reduce construction

time of the O2I-SM translation matrices. Using the results of Figure 6.7, the 2-million

unknown problem was rerun using a mixed-form method where MF-FIPWA computed the

O2I-SM matrix when the box edge was larger than 2.0λ. Otherwise, FIPWA created the

matrix. The mixed-form showed a speedup of 17% over the original FIPWA.
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Figure 6.8: Comparison of memory cost when the smallest box size is λ/10.

6.6 Conclusions on MF-FIPWA Versus FIPWA

The computational cost of MF-FIPWA equals FIPWA and scale as O(N log N). In addition,

the accuracy of the plane-wave approximations to the spectral Green’s function compares

well to the Sommerfeld integral, but has a limited range of use. The smallest box in FIPWA

and MF-FIPWA should be at larger than or equal to 0.10 λ, and under these conditions

the overall accuracy of MF-FIPWA for the bistatic scattering solution is controllable and

agreeable to FIPWA.

Without using optimization, the time to set up the O2I-SM translation matrices showed

that FIPWA is faster for small boxes (low levels in the tree), and MF-FIPWA is faster for

the top levels of the tree. To capitalize on both algorithms, a mixed form solution was shown

to provide 17% savings in construction time.
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CHAPTER 7

IMPLEMENTATION AND
OPTIMIZATION

7.1 Introduction

With any code development, it is important to pass on methods and motivating factors, so

that others may repair, modify, improve, or simply understand how the code works. There is

a short user’s manual for MF-FIPWA [40], but this chapter provides implementation details

on the data structures, numerical integration, and interpolation. These details are applicable

to other fast algorithms, especially those that use the MLFMA paradigm.

Besides clarifying these aspects of MF-FIPWA, which is mainly a research code, areas of

optimization are provided so that MF-FIPWA may be transformed into an application code.

To facilitate such an effort, debugging subroutines have been modularized and the advanced

user is given more debugging options that are transparent to the casual user. To speed up

MF-FIPWA, local error control is described with optimization.

This chapter is organized as follows. First, the architecture of the fast algorithm is

presented to highlight where the new multipole-free translator is incorporated into FIPWA.

Second, the data structures of the translators are discussed, and third, specific details of

numerical integration and interpolation are presented. Optimization is discussed in the

pertinent sections. Finally, special attention is given to applied error control.
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7.2 Architecture of the Fast Algorithm

The original idea of a purely plane-wave-based algorithm came from Professor Chew’s group

during the development of FASDPA [24], and again, during development of FIPWA for

layered media [21]. Hence, the approach to MF-FIPWA was to develop error control for

the 2-D FIPWA translator in complex media, followed by a simple substitution of the 2-

D FIPWA translator for the 2-D FMA translator. As seen in Chapter 6, the benefit of

creating a black-box translator is the ability to retain the memory usage and solve time of

O(N log N). However, to make such a substitution, and provide means for error control, one

must understand all aspects of the architecture of the fast algorithm.

A general diagram for implementing the fast algorithm is shown in Fig. 7.1. There are

three stages to the fast algorithm:

1. Setup stage – create tree, store translation and interpolation matrices, store radiation

patterns and direct interaction matrices.

2. Solve stage – apply matrix preconditioner, run iterative matrix solver.

3. Postprocessing stage - compute the fields, radar cross section, radiation pattern, input

impedance, or current distribution, and write output files.

The objective of MF-FIPWA was to change the 3-D stratified medium translation, or

O2I-SM, matrix in the set up stage. Figure 7.2, page 84, shows the primary components

used to set up the 3-D translation matrix for FIPWA and MF-FIPWA. Also shown is the

special case where the translation direction is along ẑ, and is multipole-free as discussed

in [21]. Whenever the translation direction is along the z axis, the special case is used in

lieu of FIPWA or MF-FIPWA. Once the type of translator is selected, there are two steps:

initialize the interpolation and quadrature parameters, and generate the 3-D translation

matrix.
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Figure 7.1: Top level diagram of MF-FIPWA under the MLFMA paradigm.
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Figure 7.2: Setting up the O2I-layer translation matrix for FIPWA and MF-FIPWA.
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Regardless of the type of translator, the same steps are used:

1. Initialize – set the 3-D error control for interpolation and extrapolation on Γβ for

the specific function and compute the Gauss-Laguerre quadrature points.

2. Generate 3D Matrix – compute the SDP Γβ, the interpolation and extrapolation co-

efficients, and the 2-D translation matrix, followed by assembly of the 3-D translation

matrix.

Initial efforts were spent creating the parallel branch for the multipole-free translator

(shown in Fig. 7.2), so that the code could be compiled as FIPWA or MF-FIPWA. Later,

the need to recompile the code was removed, and instead, the input file was adapted to

allow the user to select the FIPWA, MF-FIPWA, or mixed-form translator at run time.

Hence, MF-FIPWA now implies either the original 3-D FIPWA for layered media or the new

multipole-free algorithm. For clarification in this chapter, FIPWA refers to the 3-D FIPWA

translation matrix, and MF-FIPWA refers to the 3-D MF-FIPWA translation matrix and

the simulation program.

The subroutines Generate 3D Matrix and Generate 2D Matrix of Fig. 7.2, are similar

in design. First, construct the SDP, followed by the interpolation and extrapolation coef-

ficients. Second, the matrix is assembled. The main difference is in the error control. For

the outer integration, the error control is set one time, but the inner integral changes with

every quadrature point of the outer integral. Hence, the error control for the 2-D matrix

must be set with every call to Generate 2D Matrix. This error control is modularized in

MF-FIPWA, so that it can be improved as new techniques develop. It also serves as a model

for designing translator classes in object oriented programming.

In consideration of future work, it is also important to note that the data structure

used to store the translation matrix is arbitrary, but if it is not designed for use in the

subroutine, or module, that computes the matrix-vector product, then added computational

cost is incurred via interface routines. The specific data structures used in MF-FIPWA are

discussed in the next section.
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7.3 Data Structures

Data structures in themselves are not of particular interest, but when using mixed program-

ming languages and large scale codes, they need to be considered early in the design. Yet,

research codes are often developed by several people over several years, and there is a ten-

dency to write interface routines that federalize old and new codes. Hence, it is important to

design any new code so that different modules are interoperable and easily modified. There

is a large effort in Professor Chew’s research group to incorporate new developments into a

programming library. The library follows the C++ model of object oriented programming,

but it is helpful to understand the data structures of existing programs to merge, or rewrite

them into the library. This section discusses some aspects of the core data structures in

MF-FIPWA so that future researchers may add or adapt components of MF-FIPWA to the

FMA library.

7.3.1 Translation matrices

Of all the data structures used in MLFMA, and consequently, MF-FIPWA, the structures of

the leafy box radiation pattern and 3-D translation matrix are the most important. These

two components constitute more than 60% of the total cost of memory and computation.

Therefore, it is important to reduce copying or reordering of these matrices with interface

routines.

In MF-FIPWA, the translation matrices are stored according to the radiation patterns

of the leafy boxes. In cases where the interpolation matrices and matrix-vector (mat-vec)

multiply routines are stored, or computed with different formats, the translation matrices

are reordered to comply with the other routines.
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The desired storage for the mat-vec routine is

T mat-vec
JI =




TJI(θ1 = π, 0)

TJI(θ2 = π − dθ, φ1)

TJI(θ2, φ2)
...

TJI(θ2, φNφ
)

TJI(θ3, φ1)
...

TJI(θNθ−1 = dθ, φ1)
...

TJI(θNθ−1, φNφ
)

TJI(θNθ
= 0, 0)




. (7.1)

Yet, the translation matrices are created with the format

T creation
JI =




TJI(θ1 = 0, 0)

TJI(θ2 = dθ, φ1)

TJI(θ2, φ2)
...

TJI(θ2, φNφ
)

TJI(θ3, φ1)
...

TJI(θNθ−1 = π − dθ, φ1)
...

TJI(θNθ−1, φNφ
)

TJI(θNθ
= π, 0)




. (7.2)

This difference is a legacy of the original FIPWA code that requires use of an interface

routine to convert from the creation format to the mat-vec format. As seen in (7.1) and (7.2),

only the θ values are reversed, so it is straightforward to reorder the matrices. While it will

not make the code tremendously faster, storing the translator in the mat-vec sense simplifies

the code and facilitates easier optimization of various subroutines. Some of the subroutines

are for debugging, reporting memory and CPU usage, or new features of the algorithm, such

as revised error control methods.
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7.3.2 Error control modules

The error control for MF-FIPWA is different from MLFMA in the sense that one must

use a localized form of error control for MF-FIPWA. The error control modules are shown

in blocks Initialize and Generate 2D Matrix of Fig. 7.2. For each translation matrix,

one must consider the interlevel interpolation that occurs in the matrix-vector product.

The error control for the interlevel interpolation sets the number of samples according to

the bandwidth of the group size, and is determined before even allocating memory for the

translation matrix.

In MF-FIWPA, there is also interpolation and extrapolation to the SDPs with real-valued

samples, and the number of samples is determined according to the bandwidth of the 3-D

or 2-D box. Recall that the inner integral depends on the outer integral. Hence, each call to

Generate 2-D Matrix requires localized error control based on kρD.

Yet, the interpolation and extrapolation functions may also require additional control

measures. For example, the sinc interpolation function used in FIPWA can be computed

with Ns samples, but extrapolation may need to consider the excess bandwidth, as discussed

in [21]. For this additional reason, a local error control is used.

These modules for error control should be incorporated so that they are easily updated

or replaced as the technology develops. In terms of a C++ class structure, an error control

module would constitute a class method or member function. It should have access to those

parameters that are unique to the specific translator.

7.3.3 Proposed translator class for the FMA library

Based on the development of Chapters 3 and 4, and following an object-oriented paradigm,

the translator should be programmed with a constructor that creates an instance of the

translation matrix, a member function to allocate memory for the number of samples, a

member function for error control of the interpolation and extrapolation routines, a member
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class Translator {
public:

Translator();
~Translator();
void Allocate();
void ErrorControl();
void InterpolateFunc();
void ExtrapolationFunc();    
void Quadrature();
void ContourMap();              
void TranslateFunc();           
void Assemble();

}

// constructor
// destructor
// allocate memory
// set local error control
// interpolation function
// extrapolation function
// compute quadrature
// mapping function for SDP
// core function in translator
// assemble translator

Figure 7.3: Proposed translator class for FMA libary. The above is based on current
research of error control and efforts to modify existing translators.

function to compute the quadrature points, a member function to map quadrature points to

the SDP, a member function that constitutes the core function in the translator (eik(β,α)·rJI′

in the case of MF-FIPWA), and a member function to assemble the translation-matrix

elements.

This last function would allow one to invent new implementations for constructing the

translation matrix without having to rewrite an entire subroutine or class. In the C++

language, the translator could be written for MLFMA, FIPWA, and MF-FIPWA translators

as shown in Figure 7.3.

In the fast multipole algorithm (FMA) library of Prof. Chew’s group, there is a class

for constructing assorted translators. The translator class sets up various 2-D and 3-D data

structures for storing the matrices according to the matrix-vector product routines. Upon

selecting the desired translator, such as FMA, FIPWA, or others, the appropriate subroutines

are called to generate the translator. The class is written in such a way that a new translator

can be added to the library by writing an interface routine to existing code. However, the

class is not written for using inheritance. Inheritance is where a generic class is constructed,
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and specific instances can be tailored by changing or adding member functions. Without

using inheritance, new translators must be completely rewritten, or interface routines must

be used to call the existing code. This makes it difficult to add translators without having

to rewrite an entire class, and to update methods based on new research. It would be a

worthwhile investment to upgrade these classes in the FMA library.

7.4 Numerical Methods

To construct the translator to arbitrary accuracy requires specialized integration routines

and interpolation functions. In this section, the specific details are described.

7.4.1 Numerical integration

Computing the numerical integration of the SDP in the 2-D FIPWA translator in complex

media was demonstrated in [20], but when the 2-D FIPWA translator was used to construct

the 3-D MF-FIPWA translator, it was not straightforward to achieve 15 digits of accuracy.

In this section, Gauss-Laguerre integration is used to achieve the desired accuracy. By

controlling the accuracy of the inner integral, MF-FIPWA can be made more efficient than

FIPWA.

Quadrature on path II of the SDP

On path II of Γβ and Γα, Gauss-Legendre quadrature achieves high accuracy in the in-

tegration. The path is in the interval (−π/4, π/4) and the points on the path represent

propagating waves. Therefore, the number of points should be proportional to the band-

width. Yet, the path does not extend the full range of (0, 2π), so the number of points is

set in proportion to the ratio of the length of path II to the full range. For example, if the

bandwidth requires 24 points in the interval (0, 2π), and the length of path II is π/2, the

number of quadrature points is proportionally set to 6.
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Windowed Gauss-Laguerre integration

Given the integration of the function F (x), where F (x) has the form f(x)e−x on the interval

(0,∞), Gauss-Laguerre quadrature is preferred when f(x) can be approximated with La-

guerre polynomials. In the case of MF-FIPWA, the paths of integration on paths I and III

are semi-infinite and the integrand has exponential decay. The integrand F (α) = eikρρ cos α

is not in the exact form, but is transformed by mapping to α with the variable s as

F (s) = [e−s2+ikρρJ(s)es]e−s, s ∈ (0,∞), where J(s) = ∂α
∂s

.

As discussed in [29], the integrand of the SDP integral decays exponentially fast along

the integration path, but extrapolation in FIPWA becomes unstable when the path extends

deep into the complex plane. Thus, it is best to truncate the path so that s ∈ (0, smax).

The integration can be written as

I =

∫ ∞

0

ds F (s), (7.3)

≈
∫ smax

0

ds F (s)W (s), (7.4)

≈
Nq∑

q=1

wqF (sq)W (sq), (7.5)

where Nq is the number of integration points, and

W (s) =





1, s ≤ smax

0, s > smax

. (7.6)

If the integrand decays sufficiently before s = smax, then the truncation has negligible effect.

Scaled and windowed Gauss-Laguerre quadrature

Although the integrand is windowed, α may still extend too far into the complex plane after

mapping with s because the quadrature points have a large range of values. For example,

consider the 15-point rule shown in Table 7.1.

Typically in the SDP integration, smax < 10, so s15 is much larger than necessary, and

there are too few points in the range of interest. One approach has been to select a very
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high number of points such that at least 15 points occur in (0, smax), and then the integrand

is windowed as in (7.4). This method achieves only a few digits of precision. It can be used

in the outer integral of the 3-D translator for efficiency, but not for the inner integral where

high accuracy is needed.

A similar approach uses N points for s ∈ (0,∞), and then the points are scaled according

to smax. Here, sN scales according to the maximum path length, i.e., sN = smax. The weights

are also scaled so that the integral becomes

I ≈
∫ smax

0

ds
1

κ
F (s/κ)W (s/κ), (7.7)

≈
N∑

q=1

1

κ
wqF (sq/κ)W (sq/κ), (7.8)

where κ = sN/smax.

Table 7.1: Gauss-Laguerre quadrature with 15 points.

q Nodes Weights

1 9.331e-002 2.182e-001

2 4.927e-001 3.422e-001

3 1.216e+000 2.630e-001

4 2.270e+000 1.264e-001

5 3.668e+000 4.021e-002

6 5.425e+000 8.564e-003

7 7.566e+000 1.212e-003

8 1.012e+001 1.117e-004

9 1.313e+001 6.460e-006

10 1.665e+001 2.226e-007

11 2.078e+001 4.227e-009

12 2.562e+001 3.922e-011

13 3.141e+001 1.457e-013

14 3.853e+001 1.483e-016

15 4.803e+001 1.601e-020
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This method of scaling results in high accuracy and stability because the path is suf-

ficiently sampled by the quadrature rule in the shallow region of the SDP. Comparison of

various translators reveal the minimum number of points needed to achieve single and double

precision accuracy. In each case, the translation distance is two box widths, also referred to

as one buffer box separation between groups. Note that 2-D FMA achieves double precision

accuracy for most cases, so its accuracy is not shown.

Accuracy for large groups

A group is considered large when it spans one wavelength. Large groups have a large band-

width, requiring more multipoles and integration points in 2-D FMA. It has been shown

that the number of points Nq is proportional to |kρD2D|. Similarly, path II in 2-D FIPWA

should have 1
4
Nq points as it spans only one fourth the interval. Path II is integrated with

the Gauss-Legendre rule to high accuracy. Yet, paths I and III are integrated with the scaled

and windowed Gauss-Laguerre rule.

To determine the minimum number of points, results are shown in Tables 7.2–7.4 for

lossless, and complex kρ. Table 7.2 lists results for various sizes of kρ and loss tangent

tan δ = Im{kρ}
Re{kρ} = 0. It is clear that 15 quadrature points ensure single precision accuracy.

Note that as |kρD2D| decreases, the excess bandwidth must be used to increase the number

of points on path II. However, various simulations showed that MF-FIPWA can be computed

with only single precision accuracy in the 2-D FIPWA translator and still achieves excellent

agreement with 3-D FIPWA.

Tables 7.3 and 7.4 list the accuracy for cases when tan δ = ±π
3
, respectively. In these

cases, single precision accuracy is achieved with only 15 points. Therefore, large groups can

be integrated to 7 digits of accuracy with up to 15 points. By optimizing for kρ and D2D,

fewer points can be used to expedite setup at higher levels in the MLFMA tree.

93



Table 7.2: Integration error of large boxes in 2-D FIPWA for tan δ = 0. Gauss-Laguerre
integration is used on paths I and III, and Gauss-Legendre integration is used on path II.

Nq

|kρD2D| 5 9 15 20 30 40 50

5 2.8e-003 2.4e-005 1.3e-007 2.8e-008 3.0e-008 3.0e-008 3.0e-008

10 3.6e-003 1.4e-006 5.4e-008 5.1e-008 5.1e-008 5.1e-008 5.1e-008

20 6.7e-003 1.4e-006 2.7e-011 1.3e-012 1.0e-012 1.0e-012 1.0e-012

30 1.0e-002 3.1e-006 5.3e-012 4.6e-015 1.1e-015 1.8e-015 2.3e-015

50 1.7e-002 9.5e-006 1.3e-011 3.5e-015 2.8e-015 3.1e-015 3.4e-015

Table 7.3: Integration error of large boxes in 2-D FIPWA for tan δ = π
6
. Gauss-Laguerre

integration is used on paths I and III, and Gauss-Legendre integration is used on path II.

Nq

|kρD2D| 5 9 15 20 30 40 50

5 2.2e-002 1.6e-004 5.4e-007 3.1e-008 1.9e-008 1.9e-008 1.9e-008

10 5.0e-002 1.2e-004 2.2e-007 5.2e-008 4.8e-008 4.8e-008 4.8e-008

20 2.8e-001 3.7e-004 1.4e-007 2.4e-009 2.6e-011 3.9e-011 5.5e-011

30 1.3e+000 1.5e-003 3.8e-007 6.7e-009 2.1e-010 3.1e-010 4.8e-010

50 1.3e+001 1.6e-002 2.7e-005 3.7e-006 1.6e-006 1.6e-006 1.8e-006

Table 7.4: Integration error of large boxes in 2-D FIPWA for tan δ = − π
6
. Gauss-Laguerre

integration is used on paths I and III, and Gauss-Legendre integration is used on path II.

Nq

|kρD2D| 5 9 15 20 30 40 50

5 5.4e-005 6.4e-006 6.2e-008 3.6e-008 3.6e-008 3.6e-008 3.6e-008

10 2.6e-004 4.7e-008 4.5e-008 4.4e-008 4.4e-008 4.4e-008 4.4e-008

20 1.7e-004 8.3e-009 6.7e-013 6.7e-013 6.6e-013 7.0e-013 6.6e-013

30 8.0e-005 7.9e-009 2.2e-015 2.0e-015 1.4e-015 1.1e-014 4.5e-015

50 1.1e-005 3.5e-009 1.7e-015 1.4e-015 1.7e-015 1.4e-015 1.7e-015
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Accuracy for small groups

Smaller sized translation matrices have been shown to be problematic for the lossless cases

[21], and the following studies show that the same is true when kρ is complex. Tables 7.5–7.7

record results of integration error for small boxes, i.e., kρD2D < 5.

For the lossless and lossy cases, 15 points are sufficient to achieve single precision accuracy,

but in the active case, 20 points are needed. The principal reason is due to the quadratic

mapping function. When the magnitude of kρ becomes small, the quadrature points become

scaled by the mapping function and are badly distributed along the path.

Depending on the length of the path, the nodes can become sparsely distributed in the

shallow region where the waves are more important, and densely distributed in the deep

evanescent region. Figure 7.4, page 97, illustrates the distribution of points when using

the quadratic path. The points are sparsely distributed in the shallow evanescent region,

and densely distributed in the deep evanescent region. When this happens, the subsequent

interpolation and extrapolation loses accuracy. To overcome this, the number of quadrature

points must be increased to obtain more points in the shallow region. Other maps and

quadrature routines were studied, but none could provide at least single precision accuracy

for all conditions.

Based on the higher number of quadrature points that are needed on paths I and III of

2-D FIPWA, it is apparent that 2-D FIPWA must call the interpolation routine more often

than 2-D FMA. For example, given the small box size |kρD2D| = 0.1, 2-D FMA requires

only 8 quadrature points and 8 calls to the interpolation routine. In contrast, 2-D FIPWA

requires at least 2 quadrature points on path II and 30 quadrature points on paths I and III

combined, making at least 32 calls to the interpolation routine. For small boxes, 2-D FMA

is much faster, in spite of the cost to compute special functions in the multipole expansion.
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Table 7.5: Integration error of small boxes in 2-D FIPWA for tan δ = 0. Gauss-Laguerre
integration is used on paths I and III, and Gauss-Legendre integration is used on path II.

Nq

|kρD2D| 5 9 15 20 30 40 50

0.1 2.8e-002 6.7e-004 6.2e-006 1.1e-007 4.1e-011 2.0e-012 3.6e-013

0.2 2.0e-003 5.5e-004 1.8e-006 2.2e-008 6.5e-011 2.4e-012 4.2e-013

0.5 2.3e-002 2.5e-004 1.0e-006 2.1e-008 7.4e-011 2.7e-012 4.6e-013

1.0 2.2e-002 2.6e-004 9.7e-007 2.0e-008 7.1e-011 3.1e-012 6.8e-013

3 5.5e-003 1.0e-004 3.8e-007 7.9e-009 6.8e-010 7.0e-010 7.0e-010

Table 7.6: Integration error of small boxes in 2-D FIPWA for tan δ = π
6
. Gauss-Laguerre

integration is used on paths I and III, and Gauss-Legendre integration is used on path II.

Nq

|kρD2D| 5 9 15 20 30 40 50

0.1 2.0e-002 1.6e-004 9.9e-007 1.7e-008 5.9e-011 2.2e-012 4.0e-013

0.2 1.2e-002 2.7e-004 9.6e-007 2.0e-008 7.2e-011 2.7e-012 5.2e-013

0.5 2.1e-002 3.1e-004 1.2e-006 2.5e-008 9.1e-011 3.5e-012 7.2e-013

1.0 2.4e-002 3.4e-004 1.3e-006 2.7e-008 1.0e-010 4.0e-012 9.7e-013

3 2.0e-002 2.5e-004 8.9e-007 2.0e-008 4.1e-010 3.4e-010 3.3e-010

Table 7.7: Integration error of small boxes in 2-D FIPWA for tan δ = − π
6
. Gauss-Laguerre

integration is used on paths I and III, and Gauss-Legendre integration is used on path II.

Nq

|kρD2D| 5 9 15 20 30 40 50

0.1 6.4e-002 6.3e-003 2.0e-004 1.2e-005 4.6e-008 1.8e-010 1.1e-012

0.2 3.9e-002 3.3e-003 5.7e-005 2.1e-006 3.2e-009 5.5e-012 3.7e-013

0.5 4.3e-002 1.1e-003 6.8e-006 1.5e-007 9.0e-011 2.3e-012 4.0e-013

1.0 2.8e-002 1.6e-004 9.5e-007 2.5e-008 5.6e-011 9.3e-013 1.0e-012

3 1.7e-003 9.0e-005 2.9e-007 5.5e-009 1.1e-009 1.0e-009 1.0e-009
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Figure 7.4: Distribution of quadrature points from quadratic map. Top: Distribution of
Gauss-Laguerre quadrature points on the real axis. Bottom: Distribution of α(s) when using
a quadratic map. The points are sparsely distributed in the shallow evanescent region and
densely distributed in the deep evanescent region.

Summary of numerical integration

The accuracy of the numerical integration of 2-D FIPWA was compared to the exact solution.

Using scaled and windowed Gauss-Laguerre quadrature, it was shown that 15 points are

needed to achieve single precision accuracy. Based on the number of points needed for the

case of large translation matrices, 2-D FIPWA constructs the translator faster than 2-D

FMA. Yet, in the case of small boxes, 2-D FMA creates the matrix faster than 2-D FIPWA.

7.4.2 Interpolation and extrapolation

Various interpolation functions were studied in [21] for FIPWA, so the details of the sinc and

Dirichlet interpolation function are not presented. In addition, the Lagrange interpolation

function and error control are presented in [17], so they are not presented in detail either.
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In constructing the 3-D translator from the 2-D FIPWA translator in complex media, one

must remember that kρ = k sin β, where β is complex. The hyperbolic behavior of sin β

causes kρ to range from zero to infinity, and the integrand to have an effective bandwidth

of (0,∞). In addition, the effective background medium for kρ varies from pure loss to

pure gain, for the same reason. This requires an interpolation function that can extrapolate

with high accuracy for all possible values of kρ. It was soon discovered that the traditional

interpolation functions, sinc and Dirichlet, could not be used to arbitrary accuracy for all

possible values of kρ.

Results with sinc and Dirichlet functions

For the cases when |kρ| < |k|, the bandwidth is effectively smaller, so the interpolation

function must be computed for a smaller bandwidth. With the data structure designed to

store a higher sampling rate than that called for by |kρ|, the sinc and Dirichlet functions lose

2-6 digits of accuracy for extrapolation. As a means to overcome the limitation of the sinc

and Dirichlet interpolation function, an interim translator is constructed with fewer samples,

and then the interim translator is interpolated up to the size of the desired translator. This

would cost more in setup time, but by using an optimized method, the cost is actually

reduced. The optimized method is discussed at the end of this section.

Results with Lagrange polynomials

Alternatively, the Lagrange interpolation polynomials were used for extrapolation and could

be controlled to double machine precision accuracy. However, the computational expense of

computing the Lagrange coefficents was 10-100 times more expensive than the sinc function.

Local extrapolation did not produce accurate results.
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Alternate continuum interpolation function

One option is to design a new extrapolation function that is based on digital sinc interpolation

[41–43]. The interpolation function is derived, in Appendix A, for the class of functions g(x)

that have a Fourier transform g̃(k), are band-limited to −P < k < P , and are periodic with

period L. The functions are sampled at the rate L/N and the interpolation function is

IL(x) =
N

2πL

sin[(2M + 1) N
2L

x]

sin( N
2L

x)
, (7.9)

where N is the number of desired samples for the translation matrix, L is the period, M =

b L
N

P c, P is the effective bandwidth of the specific translator function, and M = b·c means

to round down to the nearest integer.

Using this interpolation approach for extrapolation, one can eliminate the need to inter-

polate at a low sampling rate, and then interpolate to a higher sampling rate. The result

is that the extrapolation function does not degrade the accuracy set by the numerical in-

tegration. However, this was not necessary because the optimized method, discussed next,

retained the accuracy and reduced setup time.

Optimization of interpolation and extrapolation

Interpolation and extrapolation with 3-D FIPWA in free space and 2-D FIPWA in complex

media have been discussed in the literature and a previous chapter. Hence, the details are

not discussed here. Instead, a method to improve extrapolation in MF-FIPWA with better

efficiency is presented. It also applies to FIPWA.

As discussed in Chapter 4, extrapolation with the sinc or Dirichlet function loses accuracy

when P is large and Im{α} is large, so oversampling degrades the accuracy when extrapolat-

ing to α. To retain high accuracy for MF-FIPWA, the number of samples used to extrapolate

to α in the complex plane is reduced when kρ < k. This corresponds to a smaller band-

width that needs fewer samples for exact interpolation with the sinc interpolation function.

Correspondingly, the extrapolation error is reduced.
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For example, in constructing the 2-D translation matrix, there are Nq integration points

on Γα and each point must be interpolated or extrapolated from a set of samples on the

real axis. The real bandwidth kD requires Ns samples, so the diagonal translation matrix

is computed as a vector with Ns elements. When kρD2D requires only N ′
s samples, where

N ′
s < Ns, an interim diagonal translation matrix is constructed with N ′

s = Ns/L, and L is an

integer factor of Ns. In digital signal processing theory, this process is known as decimation

and is used to change the sampling rate by a rational number. Using a reduced number of

samples improves extrapolation accuracy and efficiency, but the final translation matrix must

be constructed with Ns samples. Using vector notation, the interim translator is interpolated

to Ns samples as

[T]Ns×1 = [I]Ns×N ′
s
· [I′]N ′

s×Nq
· [τ ]Nq×1, (7.10)

= [I]Ns×N ′
s
· [T′]N ′

s×1, (7.11)

where T′ is the interim translation matrix, [τ ]q = eikρρ cos(αq), [I
′
]n′q = sinc(αq − φn′), and

[I]nn′ = sinc(φn − φn′).

When the sinc function is used to interpolate from T′ to T it is exact. Computational

savings occur because Ns = LN ′
s and all of the values in T′ belong in T. Before interpolation,

T has N ′
s nonzero values interlaced with L zeros. Only the zero elements of T need to be

computed. Results showed that MF-FIPWA has a savings of up to 20% in constructing the 2-

D translation matrix in this fashion. When this same method was applied to interpolation in

the 2-D FMA component of 3-D FIPWA, computation time was reduced 10%. The reason for

the difference is that MF-FIPWA uses more quadrature points to achieve the same accuracy.

7.5 Error Control Methodology

Approaches to error control typically try to find a single parameter to which all others are

dependent. In MLFMA, it is simple to develop global error control, where all of the error

100



sources are dependent on P , the spectral bandwidth. The excess bandwidth formula also

determines the spectral content of the multipole expansion for FIPWA, and the interpolation

and extrapolation functions in MF-FIPWA. Yet, there are differences in how the interdepen-

dency of numerical quadrature, interpolation, extrapolation, and multipole expansion should

be controlled between MLFMA, FIPWA and MF-FIPWA. Hence, design of algorithms such

as FIPWA and MF-FIPWA require a different approach to error control.

7.5.1 Global error control

Global error control is defined, in this work, as controlling the error with a single set of pa-

rameters that are related to all the error sources. For example, in MLFMA, there are three

sources of error: numerical integration, truncation of the multipole translator, and interpola-

tion between levels. Each source can be controlled so that the error decreases exponentially

with proper choice of the multipole truncation number, P [17,35]. The multipole truncation

is related to the bandwidth of the radiation patterns, eik·D; hence, P sets the sampling rate

for interlevel sampling in the multilevel paradigm. The refined excess bandwidth formula,

P = kD + 1.8d
2/3
0 (kD)1/3 .

determines the number of multipoles according to the bandwidth of the translator func-

tion. Given the desired number of digits of accuracy, d0, of the 2-D multipole translator,

P represents the single-sided bandwidth of the expansion. This, in turn, establishes the

sampling density needed for the interlevel interpolation. Note that the samples are on the

unit sphere, so by letting Nθ and Nφ equal the number of samples in θ and φ, respectively,

Nsamples = Ns = (Nθ − 2)(2Nφ) + 2.

Finally, the integration path in MLFMA is α ∈ [0, 2π], and the integrand is periodic.

Hence, the trapezoidal rule is accurate with 2P sample (quadrature) points. Each source

of error has been shown to be exponentially controllable [17] and dependent on the single

parameter P .
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7.5.2 Local error control

On the other hand, local error control is defined as error control with more than one set of

parameters, where the different sets are related to different error sources.

For 3-D FIPWA in layered media, the error sources have not been shown to be completely

interdependent. In [29], the dependency on P was derived for the extrapolation function,

and in [20,44], the dependency was shown to be valid for complex media. Thus, the extrap-

olation error and interlevel interpolation error can be jointly controlled with P . However,

the numerical integration on the SDP depends on the type of quadrature rule, and is not

necessarily dependent on P . MF-FIPWA uses Gauss-Laguerre integration on paths I and

III, and Gauss-Legendre integration on path II. While integration accuracy on path II is

related to the bandwidth, integration accuracy on paths I and III is not. MF-FIPWA is

considered to have local error control, and this extends to the 2-D FIPWA translator that

is used in MF-FIPWA.

In both FIPWA and MF-FIPWA for layered media, error sources are numerical inte-

gration on the SDP, interlevel interpolation, interpolation and extrapolation in the θ-plane,

interpolation and extrapolation in the α-plane, and multipole truncation. While not rig-

orously explored, local error control proved to be manageable and effective for FIPWA in

layered media [14,22,23]. MF-FIPWA also uses a local error control approach for controlling

the number of points on paths I and III of the SDP.

In MF-FIPWA, there are two elements to the localized error control. First is the control

for the complex media, and second is the control for the magnitude of kρD. When the 2-D

FIPWA translator is used to construct the 3-D MF-FIPWA translator, kρ potentially takes

on all values in the complex kρ plane. This makes the error control independent of the real

bandwidth of the translator. The length of the SDP must be set to control the bandwidth,

but the quadrature rule must compute the integral with high accuracy for many cases. In

some cases, the accuracy can be relaxed. Hence, the local control is based on the exact value
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of kρ, the group diameter D, and the quadrature rule. In the next section, these aspects are

discussed for MF-FIPWA.

7.6 Applied Error Control in MF-FIPWA

There are three methods to local error control in MF-FIPWA. First, the error is controlled by

proper choice of the interpolation and extrapolation function. Second, the inner integration

is controlled according to the specific SDP for kρ = k sin β, and third, the inner integration

is also controlled according to the complex value β. Each of these can be considered a form

of optimization because they incur the most efficiency for the desired accuracy.

7.6.1 Error control according to bandwidth

As discussed in previous sections, the bandwidth of the radiation patterns determines the

number of samples that are used to store the translation matrix. To control the error,

the interpolation function must consider the cases when kρ < k and when kρ � k. The

former case has been addressed in the previous section on optimization for interpolation and

extrapolation. The latter occurs when Im{β} > 1, where β is on Γβ. When kρ � k, there

should be very little propagation up from the layered medium.

If the interaction is between an image group and field group that are both near the

interface, then extrapolation should be computed with an increased sampling rate to ensure

that the accuracy is met. If a larger sampling rate is used, then downsampling will be

required and the construction time will increase. However, when one or both groups are

far from the interface, there are two options. First, the interaction is negligible and can be

dismissed. Second, the interaction can be computed with reduced accuracy. For convenience

in MF-FIPWA, the interactions are computed with reduced accuracy in the extrapolation

process.
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7.6.2 Error control according to the inner SDP

The SDP control depends on tan δ = Im{kρ}
Re{kρ} , and the effective bandwidth kρD2D, where

kρ = k sin(βR + iβI), D2D = D
√

2√
3
, and D is the diameter of the sphere upon which the

translator is defined. These error sources have been described in Chapter 4 and [20], but

path is easily truncated as

smax ≥
√

d0 log 10 − Im{kρ}ρJI , (7.12)

where d0 is the desired digits of accuracy in the integration and ρJI is the 2-D translation

distance. It is seen from (7.12) that as kρ becomes lossy (Im{kρ} > 0), the path decreases,

and when Im{kρ} < 0, the path lengthens. This agrees with the behavior of the SDP in

complex media [20]. For 15 digits of accuracy and lossless media, smax ≤ 6.0. Yet, not all

2-D translators need to have 15 digits of accuracy in the integration.

Based on the error results in Tables 7.2–7.7, it is sufficient to bound the path length in

3.0 < s < 10.0 and adjust the number of quadrature points accordingly. In MF-FIPWA, the

number of quadrature points on paths I and III of Γα is

Nα =





5, s = 3.0,

9, 3.0 < s < 10.0,

15, s = 10.0

(7.13)

While the accuracy of the 2-D translator is not as high as the multipole expansion, scattering

results of MF-FIPWA agree with those of FIPWA to within 2% for small to moderate sized

problems and within 1% for large problems. This optimization also enables MF-FIPWA to

construct the 3-D translation matrix faster than FIPWA for box sizes greater than 2.0λ.

7.6.3 Error control according to the outer SDP Γβ

An additional measure of control is to determine how far β is from the real axis. When β

is on paths I or III of Γβ, it is complex and the integrand decays exponentially fast. For
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large values of βI , the inner integral on Γα does not need to be computed with high accuracy

because it makes a very small contribution to the double integral. This allows the path

for Γα to be shortened and computed more quickly. This is especially true when the boxes

are large, or several box lengths from the interface of the layered medium. In these cases,

smax ≤ 1.0 and Nα = 3.

Clearly, there are various ways to optimize MF-FIPWA, but each method requires logic

statements in the error control module. To enable compiler optimization, this logic should

be minimized, or performed with elementary math operations. Otherwise, the added logic

statements could prevent the code from gaining the benefits of certain compiler and machine

combinations.

7.7 Summary

In this chapter, several aspects of FIPWA and MF-FIPWA were presented to show how

MF-FIPWA is implemented. The fast algorithm architecture is shown with emphasis on

how to construct the 3-D translation matrix. Additionally, specific details of the scaled and

windowed Gauss-Laguerre integration showed that only 15 points are needed to achieve single

precision accuracy in the 2-D translation matrix. Results of several interpolation functions

were briefly presented to illustrate the differences, and a new method was shown to speed

up the interpolation by 20%. Finally, a new error control methodology was presented for

localized error control and optimization in MF-FIPWA.
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CHAPTER 8

TESTING AND DEBUGGING

8.1 Introduction

In any code development, there are times when leaps and bounds occur during code produc-

tion, and inevitably a bug is introduced that forces the developer to backtrack. Modifying

FIPWA into MF-FIPWA was no different. There were two bugs in the code that affected

the accuracy and stability for several weeks. This chapter highlights the general debugging

approach and specific debugging approaches to fixing these bugs.

8.2 Technical Aspects

8.2.1 Code compatibility

When starting to modify FIPWA, Microsoft Visual Studio 6.0 was the tool of choice to

trace through the mixed C and Fortran code. As a matter of personal preference, operating

under the Windows operating system was more productive than using Sun’s Workshop on

the UNIX operating system. However, the code had to be modified to compile on IBM

platforms, and even then, it did not run to completion.

Fortunately, the code could run through the setup stage, and the MF-FIPWA translator

could be implemented and tested. The testing took a period of months while the code was
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learnt and components for debugging and testing were added. Part of this time was spent

implementing the error control criteria of Chapter 4.

During this development, Microsoft Visual .NET became available and provided support

for newer Intel compilers that were faster and improved for mixed language programming.

The code was moved to the .NET environment with the latest Intel C and Fortran compilers.

During the porting effort, a few libraries under .NET were found to be different from the

6.0 environment, and it took some time to make the modifications. Ultimately, the code

compiled, built, and executed, while retaining compatibility with UNIX. This was very

helpful, because the code could be run under Windows and compared to the original UNIX

solution.

When it came time to run moderate to large scale problems, a 64-bit processor was

needed. The code was compiled on the cluster of Sun Blade 1000 computers in the Center

for Computational Electromagnetics and Electromagnetics Laboratory (CCEML). Initially

the code would compile, but it would not execute, even though there were no serious compiler

or linker warnings. Professor Jose Shutt-Aine, of CCEML, made the suggestion to use the

Linux compiler because it is known to have a stricter compiler. Surprisingly, it took less

than one week to trace through the Linux compiler errors and warnings. Once modified, the

64-bit code compiled and executed to completion on Linux and UNIX. This effort enabled

the one-million unknown scaling problems.

One nuisance in the code was the declaration of long int for storing memory usage.

Declaring the integers as signed values limited the range of values for reporting bytes used

by the code. Instead, unsigned long int was substituted for the data type to improve

how the code reported memory usage. This upgrade also made it possible to compile and

run a 32-bit version of the code for problems over 2 GBytes. With the range limitation,

memory could not be allocated beyond 2 GBytes. Unfortunately, that would not happen

until the last stage of setup that occurred hours into the simulation. Lastly, this change
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made it possible to economize memory on the shared Sun cluster. While a simple upgrade,

the code is now more versatile, and several moderate sized problems (typically fewer than

500,000 unknowns) can be run on a single processor.

8.2.2 Code limitations

Besides the technical updates and improvements, several limitations had been programmed

into the code. For example, material data for the layers had to be compiled for any change,

global parameters were defined that limited the maximum size of the translation matrices,

and edge data had to be created with every simulation at a cost of O(N 2). To clean up the

code, and spend time more productively, a material class was created and the input file was

modified to allow the user to include the data directly in the input file, or specify a material

file. Second, edge data was saved to a file in the case where it did not exist, avoiding the

need to recompute the data. Several global parameters were stored in a single include file,

but they had to be modified to run simulations with more than one million unknowns. Some

of the key parameters were removed, and other parameters were set large enough so that

they did not impede the large jobs with recompilation.

These modifications were necessary to make testing and debugging more efficient, but

also made the code more user friendly. Additional modifications to the input file allow the

user to select the FIPWA or MF-FIPWA translator and to select the number of buffer boxes

at run time. The code was also modified to allow the user to scale the geometry file in an

effort to keep the input file format functionally equivalent to the input file format of the Fast

Illinois Solver Code [17].
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8.3 Debugging Methods

A nontrivial part of this work was to replace the 2-D translator as a black box with MF-

FIPWA, but various debugging routines had to be added to confirm the accuracy. Typically,

these routines would compute the relative error and print out the associated parameters and

settings. Instead of using preprocessing commands and recompiling the code, debugging

flags were placed in the text file debug.flags that could be read at run time. A subroutine

was added to check for the file debug.flags, and if it was not found, all debugging flags were

switched off. Otherwise, the specified debugging routines were set according to debug.flags.

For example, when setting up the error control, it was often helpful to run FIPWA side by

side MF-FIPWA for comparison. By simply selecting the FIPWA translator and associated

debugging flags, the translators could be compared side-by-side. Additionally, part of the

cleanup effort included making the routines to compute the 2-D FMA and 2-D FIPWA

translators modular.

8.3.1 Comparison by Green’s function

Recall from Chapter 2, the 2-D Green’s function, g(kρρji) = i
4
H

(1)
0 (kρρji) can be expanded

by factoring ρji = ρJj + ρJI + ρIi and introducing interpolation to form a vector-matrix-

vector product of a receiving pattern, a translator, and a radiation pattern. However, if

ρJj,ρIi → 0, then the radiation and receiving patterns become a constant equal to one, and

the Green’s function is equivalent to the sum of the samples stored in the 2-D translator when

scaled by the constant C = i
4
. Hence, comparison of the 2-D translator with the Hankel

function is a quick way to confirm the error control of 2-D FIPWA for complex media.

This approach helped find the reason why the accuracy was limited in spite of error control

measures. Note that this approach also applies to checking the 3-D translator because the

construction of the 3-D translator is similar in design to the 2-D translator.
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Construction of the 2-D translator

To compare the Hankel function to the translator independently of the interpolation function,

the discrete form of the translator function is computed in two stages. First, recall the

discrete form of the 2-D FIPWA translator:

T (φ) =

∫

Γα

dα f(α)I(α − φ), (8.1)

=
N∑

q=1

wqf(αq)I(αq − φ), (8.2)

=
N∑

q=1

h(αq)I(αq − φ), (8.3)

= h · I(φ), (8.4)

where f(α) = 1
π
eikρρ cos α, and [h]q = wqf(αq). The vector h is really just the discrete form

of the integral expression for the Hankel function, so that

H
(1)
0 (kρρ) =

N∑

q=1

[h]q. (8.5)

The second stage is to compute the vector I(φ) for each value of φ, compute the dot

product h · I(φ), and store the result T (φ) in the vector T . Traditionally, the translator

is considered a matrix, but it is a diagonal matrix. Here, it is treated as a vector for

simplification.

Confirming the accuracy

By computing each stage with vectors, debugging routines can be modularized to work on

each vector at the end of the respective stage. The relative error is easily checked for the

first stage as

Relative error =

(∣∣∣
∑N

q=1[h]q − H
(1)
0 (kρρ)

∣∣∣
)

∣∣∣H(1)
0 (kρρ)

∣∣∣
. (8.6)
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Following the second stage of interpolation and extrapolation, the Hankel function can be

compared to the sum of the elements of T :

H
(1)
0 (kρρ) =

Nφ∑

k=1

[T ]k. (8.7)

This two-tier method to debugging the 2-D translator enables one to first verify the

accuracy of the SDP integration, and then check the accuracy of the following interpolation

and extrapolation. It also enables comparison of various interpolation and extrapolation

routines.

Finding the accuracy bug

One aspect of this research was to compute the SDP integral with arbitrary accuracy (up to

machine limits of 15 digits), but it was realized that only 12-13 digits could be achieved con-

sistently. After using the above approach to isolate the stage where the error was introduced,

the problem was solved quickly.

The error was introduced inadvertently into the form of the Jacobian of the mapping

function that was used to find the SDP. For the fundamental SDP, i.e., when there is no

modification as discussed in previous chapters, the SDP can be found for the integrand

h(α) = eikρρ cos(α) by following the steepest descent method in [1]. The fundamental saddle

point occurs at αsp = 0, and h0 = h(αsp) = ikρρ, allowing the quadratic mapping function

to be defined for points near the saddle point as

−s2 = h(α) − h(αsp), (8.8)

= ikρρ cos(α) − ikρρ, (8.9)

= ikρρ (cos(α) − h0) , (8.10)

where s, ρ ∈ [0,∞], kρ = kρ,r + ikρ,i, and h0 = 1. Note that the last parameter, h0, is

determined by the location of the saddle point. Hence, it can be used as a control parameter

for exploring alternate SDPs. For example, the fundamental SDPs that are used to form
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the modified SDP have saddle points at αsp = ±φG, where φG = sin−1(D/ρ), and D is the

diameter of the group. In these cases, h0 = h(αsp) = ikρρ cos(φG).

In this work, the modified SDP is formed by shifting the fundamental SDP by φG, so

that the fundamental saddle point results in h0 = 1, and the fundamental SDP is defined by

α(s) = cos−1

(
h0 −

s2

ikρρ

)
. (8.11)

There is an associated Jacobian function for the mapping function, α(s), that is defined

as J(s) = ∂
∂s

α(s). The Jacobian function for (8.11) is

J(s) =

2s
ikρρ√

h0 − (1 − s2

ikρρ
)2

. (8.12)

However, in this form J(s) has three divide operations that limit the accuracy in com-

puting J(s), and subsequently the SDP integral,

I = II + III + IIII =
1

π

∫ 0

−∞
ds eikρρ cos(α(−s))J(−s)

1

π
+

∫ φG

−φG

dα eikρρ cos α +
1

π

∫ ∞

0

ds eikρρ cos(α(s))J(s),

to 12-13 digits of precision.

When h0 = 1, J(s) can be simplified to

J(s) =
2√

2ikρρ − s2
. (8.13)

Although it is possible for kρ = is2/(2ρ), it has not been observed. As a precaution, the

original form of J(s) is used should it occur. Also, J(s) is an even function, which makes it

possible to reduce the three integration paths to just two paths.

Ultimately, the bug was resolved and arbitrary accuracy was achieved.

Linear mapping function for finding the SDP

As mentioned above, the quadratic mapping function exhibits problems with the distribution

of the quadrature points. A better method is to use the quadratic function only for points
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near the saddle point, and to use a linear mapping function for the remaining parts of the

path.

The linear mapping function is derived in the same fashion as Eq. (8.11).

−s = ikρρ cos α − ikρρ, (8.14)

= ikρρ (cos α − 1) , (8.15)

α(s) = cos−1

(
1 − s

ikρρ

)
, (8.16)

where the saddle point is located at αsp = 0. The Jacobian function is

J(s) =
1√

2ikρρ − s2
. (8.17)

8.3.2 Comparison by plane wave direction

Besides the inaccuracy of the Green’s function expansion, the code was initially unstable, i.e.,

for small problems the results of MF-FIPWA agreed with FIPWA, and as the problem size

increased, the two sets of results did not agree. After simplifying the Jacobian function, the

error could be controlled to arbitrary accuracy, but the instability remained. While the sum

of the matrix elements was verfied to be arbitrarily accurate in Eq. (8.7), the iterative matrix

solution would not converge, or when it did, the solution did not compare well with FIPWA.

To find the bug in the code, the 2-D FIPWA translator was examined sample-by-sample and

compared to the 2-D FMA translator.

Each translator is defined on a sphere of a certain size and for a specific direction. In

cylindrical coordinates, the 2-D translator is defined for the vector ρJI with the angular

direction φJI . The plane wave representation of the Green’s function expansion is captured

in the translator as angular samples, so that if one examines the stored samples of the

translator, i.e., the plane wave representation, then the dominant values should occur in the

angular direction for which the translator is defined (φJI).
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Upon comparing the elements of the 2-D FMA and 2-D FIPWA translators side-by-

side, it was immediately clear that the matrix elements of the 2-D FIPWA translator were

improperly indexed during its construction. Hence, the plane waves were correct in value,

but were placed in the wrong location.

Figure 8.1 illustrates how the plane wave directions were incorrectly indexed in the 2-D

FIPWA translator, and how they appeared after the indexing was corrected. The solid stem

lines with circles represent the location of the samples before the fix and the dashed stem

lines show the location after the fix. The dotted line is the direction of the translation, φJI .

With the indexing corrected, the dominant plane waves are symmetrically placed about φJI .

With this bug repaired, the code scaled well for large problems, as seen in Chapter 5.
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Figure 8.1: Debugging the stability problem. The instability was caused by misaligning
plane waves during construction of the translation matrix. After fixing the code, the plane
waves were properly aligned to the direction of the translation, φJI , shown by the dotted
line.
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8.4 Summary

To develop MF-FIPWA, the original FIPWA code had to be modified. To aid in the effort,

various improvements were made, and the code was modified to run on alternate operating

systems. When problems of accuracy and stability arose, debugging routines and techniques

were added to find the bugs. Ultimately, the code was improved and debugged so that

MF-FIPWA runs on Windows, UNIX, and Linux, and can solve large scale problems with

arbitrary accuracy.
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CHAPTER 9

NONUNIFORM SAMPLING OF θ-φ
PLANE

9.1 Introduction

The fast algorithm provides a tremendous savings in memory and cpu resources with a cost of

CN log N . While there is not much more that can be done to improve the scaling, the scaling

constant can be improved to achieve further savings. In this chapter, one such approach is

taken to attack the largest cost of memory and setup time, i.e., the radiation patterns. As

a result, the time to compute the matrix-vector product is reduced.

The idea of optimal sampling was presented by Bucci [38], who developed local inter-

polation of a sphere to reduce the data needed to store and represent radiation patterns of

antennas. The idea has been considered for the fast algorithm previously [35], but it has not

been implemented because an added level of sophistication must be programmed into the

code. The traditional trade off has been to take the easier, less sophisticated code over the

potential savings.

Here, the optimal sampling, or nonuniform sampling, of the radiation patterns is studied

for FIPWA with the note that it automatically applies to MF-FIPWA. Previous estimates

of reduction in memory were 20%. Using moderate sized spheres, the set-up time and cost

of the radiation pattern is shown to be reduced by up to 30%.
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The chapter is organized as follows. First, the distribution of typical memory costs in

FIPWA is shown, followed by the new format to store the translation matrices. Lastly,

results of the potential savings are presented.

9.2 Memory and CPU Costs of the Fast Algorithm

The distribution of memory and setup costs in the fast algorithm have been studied for

MLFMA in various sources [17, 35]. FIPWA and MF-FIPWA for layered media follow the

same cost trends to include the addition of the translator for layered medium. In the layered

media problem, the outgoing-to-incoming (O2I) translator has two forms. One is the free

space translator for the direct interaction, and the other is the O2I translator for the layered,

or stratified, medium. The latter is called the O2I-SM translator to distinguish it from

the free-space translator. Other components of FIPWA, such as interpolation and direct

interaction matrices, have essentially the same cost of memory and time as in MLFMA.

Hence, the reader is referred to the references for more details on interpolation, outgoing-to-

outgoing (O2O), incoming-to-incoming (I2I) matrices, and direct interaction matrices.

In this section, the radiation pattern matrices are associated with the leafy boxes of the

MLFMA tree, i.e., the radiation pattern of the basis elements. Recall that in MLFMA,

FIPWA, and MF-FIPWA, the radiation patterns at the leafy level are aggregated to the

smallest box in the tree to form a higher level radiation pattern. However, this occurs

during the matrix-vector product. First, the leafy boxes of the tree are computed and stored

during the set-up stage.

As a prelude to the nonuniform sampling approach, the O2I and O2I-SM translators have

each been constructed with different methods than earlier versions of FIPWA. Hence, the

test code is called FIPWA with Nonuniform Sampling (FIPWANOS).
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For a representative example without using nonuniform sampling, the memory costs and

times are shown in Tables 9.1 and 9.2 for the scattering by a 1-m sphere discretized with

500,300 unknowns.

Table 9.1: Distribution of memory for FIPWA. Results are for a 1-m sphere with 500,300
unknowns above a half space, and two typical sizes for the smallest box. In each case, 8
levels are used. The frequencies are 2.959 GHz and 4.197 GHz for smallest box sizes of λ/10
and λ/5, respectively.

Memory Cost (MB) Percentage of Total

λ/10 λ/5 λ/10 λ/5

O2O and I2I 2.6 8.7 0.13 0.22

O2I 50.7 172.8 2.53 4.30

O2I-SM 421.6 631.8 21.06 15.74

Pole Contribution 9.7 115.6 0.48 2.88

Interpolation <1.0 <1.0 0.05 0.02

Block Preconditioning 33.9 33.9 1.69 0.84

Direct Interaction Matrix 349.9 350.1 17.48 8.72

Radiation Patterns 710.1 1 872 35.48 46.64

Other 422.5 828.1 21.10 20.63

Total memory 2 002 4 014 100.00 100.00

Table 9.1 lists the dominant costs of memory in MBytes and percentage of the total for

FIPWA when the number of unknowns is 500,300. Also, consideration is given to the smallest

box size, so results are shown for two sizes of the smallest box of the MLFMA tree. Recall

that when the box size is smaller than λ/4 the accuracy of the solution is reduced. However,

the cost in memory and time to compute the matrix-vector product is much improved over

larger box sizes. In each case, the direct interaction and radiation patterns use the most

memory. For the smallest box size of λ/10 in Table 9.1, the direct interaction matrices and
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the radiation patterns constitute 53% of the total cost in memory. When the box size is

doubled to λ/5, the cost for the radiation patterns increases 11%, while the cost of the direct

interaction matrices is halved. For the surface integral equation, and a spherical scatterer,

the number of direct interaction matrices is reduced as the smallest box size increases.

Table 9.2 shows the largest costs in CPU time during the setup stage, and the matrix-

vector product. Notice that the mat-vec time increases by more than a factor of two when

the smallest box size is doubled.

It should be noted that the reason the O2I setup time is longer than the O2I-SM setup

time in FIPWANOS is due to different methods of construction for the nonuniform sampling

method. At the time of this report, the particular construction method for the O2I transla-

tion matrix had a higher cost, but it can be kept the same as the setup time for FIPWA. As

the setup time is not the focus of this study, it is disregarded in the following results.

Table 9.2: Distribution of computation time for FIPWA. Results are for a 1-m sphere with
500,300 unknowns above a half space, and two typical sizes for the smallest box. In each
case, 8 levels are used. The frequencies are 2.959 GHz and 4.197 GHz for smallest box sizes
of λ/10 and λ/5, respectively.

CPU Cost ( CPU sec)

Setup Costs λ/10 λ/5

O2I 917.6 10 190

O2I-SM 672.1 3 272

Pole Contribution 112.1 188.4

Direct Interaction Matrix

and Radiation Patterns 80 030 138 316

Mat-vec 77.3 191.2

So far, only the matrices for the radiation patterns of the leafy boxes have been considered.

Yet, there is potential to save in memory and time during the set up of the O2I and O2I-SM
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matrices. The leafy box matrix and O2I matrices utilize the same data structure, and the

leafy box matrices are the same size as the smallest O2I and O2I-SM matrices. Thus, if the

number of samples is reduced, as in the nonuniform sampling method, then the translation

matrices have lowered costs of memory and setup time. In the next section, the data structure

is briefly examined, and results of moderate sized problems are presented.

9.3 Uniform and Nonuniform Sampling

9.3.1 Uniform sampling

The 3-D translator has Ns = (Nθ − 2)(2Nφ) + 2 samples in Ωs ∈ {θs ∈ [0, π], φs ∈ [0, 2π]},

where Nθ = P and Nφ = 2P to sufficiently sample the radiation patterns. In constructing the

3-D translator, every 2-D translator uses Nφ samples. This is uniform sampling. It is simple

to implement and convenient for allocating memory for the interpolation and translation

matrices.

The method used to construct the translator with uniform sampling is based on the

number of samples, Ns, needed to store the radiation pattern. The Green’s function has the

form

g(r, r′) =
Ns∑

n=1

βjJ(Ωs) · TJI(Ωs) · βIi(Ωs), (9.1)

where the translation matrix is diagonal, and stored as an array.

This structure is efficient in both memory allocation and in the construction of the

translator. Clearly, with Nφ fixed, the memory is allocated according to Ns. The construction

is straightforward.

9.3.2 Nonuniform sampling

In nonuniform sampling, each value of θ corresponds to a different set of samples φ. This

requires a two-dimensional array to store the sample location on the sphere, because the φ
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values are different at each latitude. The new translation matrix is

TJI =




TJI(θ1 = 0, 0)

TJI(θ2, φ2,1)

TJI(θ2, φ2,2)

...

TJI(θ2, φ2,N2
φ
)

TJI(θ3, φ3,1)

...

TJI(θ3, φ3,N3
φ
)

TJI(θNθ−1, φ3,1)

...

TJI(θNθ−1, φNθ−1,N
Nθ−1
φ

)

TJI(θNθ
= π, 0)




. (9.2)

There are different ways to construct this translation matrix, but if one is not careful,

the construction cost can exceed O(N log N).

9.4 FIPWANOS Versus FIPWA

To compare the two methods, FIPWA and FIPWANOS are used to compute the setup

stage and matrix-vector product for several small to moderate-sized spheres over a lossy half

space. Additionally, cases are compared for two sizes of the smallest box. This is helpful for

determining tradeoffs between accuracy and efficiency.

121



Table 9.3: Cost of uniform sampling for smallest box size of λ/10. Results for various 1-m
spheres over a half space.

Number of unknowns

1 200 10 092 101 568 250 300

Frequency (GHz) 0.103 0.297 0.943 1.481

Max level 3 5 6 7

O2I (MB) 0.4 2.3 5.4 15.4

O2I-SM (MB) 2.0 12.6 90.9 215.2

Radiation Patterns (MB) 1.7 14.2 143.0 355.2

Total memory (MB) 6.1 45.6 398.4 988.1

Mat-vec (CPU sec) 0.11 1.18 14.0 37.2

9.4.1 Memory cost of FIPWANOS for smallest box size of λ/10

Cost comparison

Tables 9.3 and 9.4 list the cost to store the O2I and O2I-SM translation matrices, the

leafy box radiation patterns, and the total memory for uniform (FIPWA) and nonuniform

(FIPWANOS) sampling methods, respectively. In each case, the smallest box is λ/10 for

small to moderate sized problems (N < 500 000). Memory is measured in MBytes and the

mat-vec time is measured in CPU seconds.

When the smallest box is λ/10, the costs to store the radiation patterns are identical.

The reason the storage is only reduced by a small amount and the cost of the radiation

patterns are equal is because of the smallest box size. As the box size becomes smaller, the

number of samples for φ reduces to a constant. In other words, there is always a minimum

number of plane waves that are needed for the radiation patterns and translation matrices.

The minimum number is used at every latitude on the sphere.
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Table 9.4: Cost of nonuniform sampling for smallest box size of λ/10. Results for various
1-m spheres over a half space.

Number of unknowns

1 200 10 092 101 568 250 300

Frequency (GHz) 0.103 0.297 0.943 1.481

Max level 3 5 6 7

O2I (MB) 0.3 1.7 4.1 11.3

O2I-SM (MB) 1.9 11.4 84.7 200.7

Radiation Patterns (MB) 1.7 14.2 143.0 355.2

Total memory (MB) 5.8 42.8 381.2 943.2

Mat-vec (CPU sec) 0.09 0.97 11.3 29.5

Savings in memory and mat-vec time

The percentage of reduction for each item in Tables 9.3 and 9.4 is listed in Table 9.5. There

is an average reduction of 19% in the mat-vec time, and an average reduction of 5% in the

storage costs. The mat-vec time often constitutes a large portion of the total simulation time,

so even with a small savings in memory, the savings in mat-vec time make the nonuniform

sampling method worth exploring.

9.4.2 Memory cost of FIPWANOS for smallest box size of λ/5

Cost comparison

Higher accuracy typically costs more time, so it is desirable to save computational time for

the case when the smallest box size is λ/5. By comparing FIPWA and FIPWANOS for this

case, it becomes clear that there is potential for a large reduction in the simulation time.
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Table 9.5: Percentage of reduction for smallest box size of λ/10. Results for various 1-m
spheres over a half space.

Percentage of Reduction

Number of unknowns Mean

1 200 10 092 101 568 250 300

Frequency (GHz) 0.206 0.594 1.887 2.963

Max level 3 5 6 7

O2I 25.00 26.09 24.07 26.62 25.45

O2I-SM 5.00 9.52 6.82 6.74 7.02

Radiation Patterns 0 0 0 0 0

Total memory 4.92 6.14 4.32 4.54 4.98

Mat-vec 18.18 17.80 19.29 20.70 18.99

Similar to the previous section, Tables 9.6 and 9.7 list the cost to store the O2I and O2I-

SM translation matrices, the radiation patterns, and the direct interaction matices for cases

when the smallest box is λ/5. The mat-vec time is also given. The difference in memory

and time is very noticeable.

Savings in memory and mat-vec time

Previous estimates of the memory savings were approximately 20%, Table 9.8, page 126,

shows that the average reduction in storage for the case when the smallest box dimension

is a = λ/5 is 22%, which agrees with the earlier estimates. Yet, the average reduction in

mat-vec time is 31%. As a matter of perspective, with a smallest box size of a = λ/5 for

N = 1 000 000, the simulation can take approximately 80 hours to complete, and cost nearly

8 GBytes of RAM. With the non-uniform sampling method, the same problem can be solved

in nearly the same time and cost as the case where a = λ/10 (approximately 60 hours with
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4 GBytes of RAM). The benefit is that the setup with a larger size of a results in a more

accurate solution.

Table 9.6: Cost of uniform sampling with 3-D FIPWA when smallest box size is λ/5.
Results for various 1-m spheres over a half space.

Number of unknowns

1 200 10 092 101 568 250 300

Frequency (GHz) 0.206 0.594 1.887 2.963

Max level 3 5 6 7

O2I (MB) 1.0 5.3 15.3 50.5

O2I-SM (MB) 3.4 19.3 130.6 320.2

Radiation Patterns (MB) 4.5 37.5 377.0 936.5

Total memory (MB) 11.7 86.9 769.7 1 949

Mat-vec (CPU sec) 0.23 2.55 31.5 87.2

Table 9.7: Cost of nonuniform sampling with 3-D FIPWA when smallest box size is λ/5.
Results for various 1-m spheres over a half space.

Number of unknowns

1 200 10 092 101 568 250 300

Frequency (GHz) 0.206 0.594 1.887 2.963

Max level 3 5 6 7

O2I (MB) 0.7 4.0 11.1 34.5

O2I-SM (MB) 2.6 15.9 112.3 271.7

Radiation Patterns (MB) 3.2 27.1 273.0 678.1

Total memory (MB) 9.0 68.2 604.2 1 519

Mat-vec (CPU sec) 0.15 1.80 22.2 61.1
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Table 9.8: Percentage of reduction for smallest box size of λ/5. Results for various 1-m
spheres over a half space.

Percentage of Reduction

Number of unknowns Mean

1 200 10 092 101 568 250 300

Frequency (GHz) 0.206 0.594 1.887 2.963

Max level 3 5 6 7

O2I 30.00 24.53 27.45 31.68 28.42

O2I-SM 23.53 17.62 14.01 15.15 17.58

Radiation Patterns 28.89 27.73 27.59 27.59 27.95

Total memory 23.08 21.52 21.50 22.06 22.04

Mat-vec 34.78 29.41 29.52 29.93 30.91

It should be noted that the lower sampling rate near the poles may need to be accounted

for in the interlevel interpolation process. Otherwise, the accuracy in the mat-vec product

may degrade and the iterative solution could require more iterations. This would be self-

defeating. However, the results suggest that it is worth exploring.

9.5 Summary

It was shown that the bottle-neck in memory and setup time of the fast algorithm is the

radiation patterns at the leafy level. By reducing the number of samples needed to store the

translation matrices and radiation patterns with nonuniform sampling of the θ−φ pairs, the

total storage, setup time, and time per matrix-vector product are reduced up to 30%. While

complete solutions are not presented, it is clear that there is a large savings in memory, setup

time, and time to compute the matrix-vector product.
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CHAPTER 10

CONCLUSIONS

10.1 Conclusions

The multilevel multipole-free fast algorithm was presented with O(N log N) cost in memory

and processing time in the iterative solver, making it on par with other multilevel fast

algorithms. The new algorithm evolves directly from FIPWA for layered media, where the

3-D translators are constructed with a multipole expansion of the 2-D Green’s function. In

the new algorithm, the 2-D FIPWA, for complex media, replaces the multipole expansion to

form a completely multipole-free fast algorithm called the multipole-free fast inhomogeneous

plane-wave algorithm (MF-FIPWA). MF-FIPWA was validated by comparing the results of

a benchmark problem with results from FIPWA and a full matrix solver.

In addition, FIPWA was compared to MF-FIPWA in terms of setup memory and CPU

costs, and accuracy. Various scattering problems were studied to reveal when MF-FIPWA

outperforms FIPWA and vice-versa. It was shown that without optimization, MF-FIPWA

has lower setup time for large boxes in the tree, and FIPWA has lower setup time for small

boxes in the tree. The accuracies are comparable.

To solve large scale problems, various debugging methods were used and discussed to aid

future developers of MF-FIPWA or other codes. The debugging routines gave a new look
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at the 2-D FIPWA translator that was summarily substituted as a black box for the 2-D

FMA translator. Upon exploring alternative methods of implementing MF-FIPWA, so as to

reduce setup time, it became apparent that additional savings could be obtained for both

FIPWA and MF-FIPWA by using nonuniform sampling.

The nonuniform sampling method was briefly studied to gauge the potential savings in

memory, setup time, and time to compute the matrix-vector product. Substantial savings

of up to 30% can be achieved with nonuniform sampling, making the method an excellent

topic of further research.

10.2 Future Work

Implementation of MF-FIPWA was challenging even with a black box approach. Physical

differences exist between the two mathematical formulations that require alternative methods

for interpolating and extrapolating to the steepest descent paths and computing highly

accurate numerical integration. Future work with MF-FIPWA should explore novel methods

to perform both, and also to implement the nonuniform sampling method. Storage of the

radiation patterns of the leafy boxes and computing the matrix vector product constitute

the majority of the simulation cost and storage requirements. Hence, there is potential to

make large improvements to fast algorithms in general by using the nonuniform sampling

methods for interpolation between levels in the tree.
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APPENDIX A

SPECIAL INTERPOLATION
FUNCTION

The interpolation function is derived for the 2-D translator in MF-FIPWA.

Given the function g(t) that is band-limited to −M < ω < M , g(t) can be reconstructed

exactly when convolved with the sinc function or the Dirac delta function as

g(t) =

∫ ∞

−∞
dτ g(τ)I(τ − t), (A.1)

where I(t) = M
π

sincMt = M
π

sin(Mt)
Mt

, or I(t) = δ(t).

If g(t) is convolved with a Dirac comb function with NL spacings in the period L, it can

be made to be periodic with period L as

gL(t) =

∫ ∞

−∞
dτ g(τ)TL(τ − t), (A.2)

where gL(t) represents the periodic form of g(t), TL(t) =
∑∞

p=−∞ δ(t − pl), l = L/NL, and

p ∈ Z.

The special interpolation function must be periodic so that

gL(t) =

∫ ∞

−∞
dτ g(τ)IL(t − τ), (A.3)

and is obtained by substituting (A.1) into (A.2) to form the double convolution

gL(t) =

∫ ∞

−∞
dτ

[∫ ∞

−∞
ds g(s)I(s − τ)

]
TL(τ − t), (A.4)

=

∫ ∞

−∞
dτ

[∫ ∞

−∞
ds g(s)I(s − τ)

] ∞∑

p=−∞
δ(τ − pl). (A.5)
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The order of convolution is easily swapped in the Fourier space with the convolution theorem

gL(t) = g(t) ∗ I(t) ∗ TL(t), (A.6)

= F .T .−1
{
g̃(ω)Ĩ(ω)T̃L(ω)

}
, (A.7)

= F .T .−1
{
g̃(ω)ĨL(ω)

}
, (A.8)

where g̃(ω), Ĩ(ω), ĨL(ω), and T̃L(ω) represent the Fourier transforms of g(t), I(t), IL(t) and

TL(t), respectively.

In (A.8), ĨL(ω) = Ĩ(ω)T̃L(ω), for which the Fourier transforms are well known as

Ĩ(ω) =





1, −M < ω < M

0, otherwise
, (A.9)

T̃L(ω) =
1

l

∞∑

m=−∞
δ(ω − m/l). (A.10)

Starting with the inverse Fourier transform

IL(t) =
1

2π

∫ ∞

−∞
dω e−iωtĨ(ω)T̃L(ω), (A.11)

=
1

2π

∫ ∞

−∞
dω e−iωt 1

l

N∑

m=−N

δ(ω − m/l), (A.12)

where N = blMc, and b·c rounds the argument down to the nearest integer, the inverse

Fourier transform of ĨL(ω) results in

IL(t) =
1

2π

∫ ∞

−∞
dω e−iωtĨL(ω), (A.13)

=
1

2π

∫ ∞

−∞
dω e−iωt 1

l

N∑

n=−N

δ(ω − n/l), (A.14)

=
1

2πl

N∑

n=−N

∫ ∞

−∞
dω e−iωtδ(ω − n/l), (A.15)

=
1

πl

N∑

n=−N

1

2
e−i n

l
t. (A.16)
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The sum is recognized as a geometric series with the closed form solution

N∑

n=−N

1

2
e−i n

l
t =

N∑

n=−N

1

2

(
e−i t

l

)n

(A.17)

=
1

2
+

N∑

n=1

cos

(
n

t

l

)
, (A.18)

=
sin

[
(2N + 1) t

2l

]

2 sin
(

t
2l

) . (A.19)

Hence,

IL(t) =
1

2πl

sin
[
(2N + 1) t

2l

]

sin
(

t
2l

) , (A.20)

where N = blMc, l = L/NL, and L and M are the period and single-sided bandwidth

of g(t), respectively. The form of IL(t) is sometimes called a digital sinc, or periodic sinc

function [41–43].
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APPENDIX B

COMPARATIVE RESULTS OF
SCALING STUDY

This appendix presents the set of data used in the scaling study of Chapters 5 and 6. The

data is created with FIPWA and MF-FIPWA for a 1-meter sphere at various frequencies. The

spheres are always located 0.2 m above the half space with ε = (6.5, 0.6). In Figures B.1–B.6,

the smallest box size is a = 0.10λ. Data in Figs. B.7–B.10 are the cases when the smallest

box size is a = 0.20λ. When a is smaller, the simulation requires more memory, but it

produces more accurate results.
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Figure B.1: Bistatic scattering and relative error of sphere at 0.103 GHz. Top: Scattering
solution of FIPWA and MF-FIPWA. Bottom: Relative error of MF-FIPWA with FIPWA.
The smallest box size is 0.10 λ.
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Figure B.2: Bistatic scattering and relative error of sphere at 0.297 GHz. Top: Scattering
solution of FIPWA and MF-FIPWA. Bottom: Relative error of MF-FIPWA with FIPWA.
The smallest box size is 0.10 λ.
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Figure B.3: Bistatic scattering and relative error of sphere at 0.943 GHz. Top: Scattering
solution of FIPWA and MF-FIPWA. Bottom: Relative error of MF-FIPWA with FIPWA.
The smallest box size is 0.10 λ.
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Figure B.4: Bistatic scattering and relative error of sphere at 1.481 GHz. Top: Scattering
solution of FIPWA and MF-FIPWA. Bottom: Relative error of MF-FIPWA with FIPWA.
The smallest box size is 0.10 λ.
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Figure B.5: Bistatic scattering and relative error of sphere at 2.099 GHz. Top: Scattering
solution of FIPWA and MF-FIPWA. Bottom: Relative error of MF-FIPWA with FIPWA.
The smallest box size is 0.10 λ.
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Figure B.6: Bistatic scattering and relative error of sphere at 2.959 GHz. Top: Scattering
solution of FIPWA and MF-FIPWA. Bottom: Relative error of MF-FIPWA with FIPWA.
The smallest box size is 0.10 λ.
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Scattering of Sphere.   Freq: 0.206 GHz,   Elev: 30 deg,  N = 1200,  Smallest box: 0.20 λ
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Figure B.7: Bistatic scattering and relative error of sphere at 0.206 GHz. Top: Scattering
solution of FIPWA and MF-FIPWA. Bottom: Relative error of MF-FIPWA with FIPWA.
The smallest box size is 0.20 λ.
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Figure B.8: Bistatic scattering and relative error of sphere at 0.594 GHz. Top: Scattering
solution of FIPWA and MF-FIPWA. Bottom: Relative error of MF-FIPWA with FIPWA.
The smallest box size is 0.20 λ.
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Scattering of Sphere.   Freq: 1.887 GHz,   Elev: 30 deg,  N = 100568,  Smallest box: 0.20 λ
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Figure B.9: Bistatic scattering and relative error of sphere at 1.887 GHz. Top: Scattering
solution of FIPWA and MF-FIPWA. Bottom: Relative error of MF-FIPWA with FIPWA.
The smallest box size is 0.20 λ.
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Scattering of Sphere.   Freq: 2.963 GHz,   Elev: 30 deg,  N = 250300,  Smallest box: 0.20 λ
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Figure B.10: Bistatic scattering and relative error of sphere at 2.963 GHz. Top: Scattering
solution of FIPWA and MF-FIPWA. Bottom: Relative error of MF-FIPWA with FIPWA.
The smallest box size is 0.20 λ.
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